
AO-AI12 915 COMPUTER CORP OF AMERICA CAMBRIDGE MA F/G R/8

DESIGN F OR A PRORA 4 VISU ALIZATION SYSTEMA.iCF EO.R ALNUMFIDL -801-BOC-0683

UNCLASSIFIED CCA-81-04 NL

LmhEE~hE

11_11

4-0 .112.0

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS 1963 A

Design for a Program Visualization System

:C)

Christopher F. Herot
Technical Report Richard Carling
CCA-81-04 Mark Friedell
January 1, 1981 David Kramlich

82 U 026
Onriginal O@.1s. Cornputer CwotPC to of Anwits

plates s AIL W ePro!et. 575 Technology Square
og. il 1 16 Cambridge, Massachusets 02139whit. -- -_

DOCUMENT CONTROL DATA - R & D

(Desin classification of title. body of abstrct and indexing anotatio must be entered when the overall r amport to ilsl tSllzaetS

. ODSRATNvAeCNTETS (Coopaute aut) 2-. REPORT SECURITY CLASSFICATION
Computer Corporation of America Unclassified
675 Massachusetts Avenue b- GROUP
Cambridge, MA 02139 R None

8. REPORT TITLE

J'Design for a Program Visualization System"

4. DESCRIPTIVE NOTES (ypo of report and inclusive do#**)

Final reor
S. AUTNO N(S) ff , . -ide Initial, lTt nTemN)

Christopher F. Herot, Richard Ca ling, Mark Friedell, David Kramlich

0. RPPORT DAT R 7N. TOTAL NO. OF PAGE 7b. NO. OF A IS

1 January 1981 A R
ICONTRACT OR GRANT NO. 9& ORIIGINATOIR*S REPORT NUMrSIOR(II)

10. lISTRlIIOUTION SITATEMENT"

Distribution of this document is unlimited.

,,one.., Defens AvneRsear ch Projects
Agency/Defense Sciences Office

Cybernetics Technology Division
I1. ASSTRACT

This report presents .he results of a study by Computer
Corporation of America (CCA) to determine the feasibility of
a Program Visualization (PV) system -- a system that uses computer
graphics to provide lifecycle support for software development.
The PV system will provide both static and dynamic (animated)
views of systems to designers, programmers, and users. The goal
is to facilitate their understanding of large (10**6 lines of code),
complex software systems. Automated visualization of computer
programs offers the opportunity to:),

-(Improve the productivity of the limited number of programmers
who will be available to work on the increasingly large and
complex software systems of the 1980's])

-Cfake it easier to express the mental images of the

producers (writers) of programs,

-..Facilitate communication of those mental images to the
consumers (readers) of programs..--

Securty Classification
1 14. LINK A LINK 6 LINK C

KUY WO ROG

NOLSI WT 0OLl WI MOLE WT

Software engineering

Software productivity

Computer graphics

* Ada

Programming Environments

DtI '

CO&O

WV

* Unclassified

it

ANN=---

Design for a Program

Visualization System

Christopher F. Herot
Richard Carling

Mark Friedell
David Kramlich

Technical Report
CCA-81 -04

Cmper Corporation of Amaila
575 Technology Square

Cambridge, Massachusetts 02139

This research was supported by the Defense Advanced Research Projects Agen-
cy of the Department of Defense and was monitored by the Office of Naval
Research under Contract No. N00014-80-C-0663. The views and conclusions
contained in this document are those of the authors and should not be interpret-
ed as necessarily representing the official policies, either expressed or Implied,
of the Defense Department, the Office of Naval Research, or the U.S. Government.

Design For a Program Visualization System

CONTENTS

Page

I INTRODUCTION I

1.1 Motivation 1
1.2 The Role of Graphics 2
1.3 Approach 2
1.4 Outline of Report 3

2. A CONCEPTUAL FRAMEWORK FOR
PROGRAM VISUALIZATION 3

2.1 System Requirements Diagrams 4
22 Program Function Diagrams 4
2.3 Program Structure Diagrams 4
2A Communication Protocol Diagrams 4
2.5 Composed and Typeset Program Text 4
2.6 Program Comments and Commentaries 5
2.7 Diagrams of Flow of Control 5
2.8 Diagrams of Structured Data 6
29 Diagrams of Persistent Data 6
2.10 Summary 6
2.11 Specifying Program Visualizations 6

3. USER INTERFACE 7

3.1 Requirements 7

3.1.1 The Visual Language 7
3.1.2 Integration 8
3.1.3 Defaults 9

3.2 User Interface Design Issues 9
3.2.1 Program Space 9
3.2.2 User Controls 9

3.2.2.1 View Specification 9
32.22 Entering Information About a Program 10
3.22.3 Interacting with a Program 11

4. IMPLEMENTATION APPROACH 11

4.1 The Visualizer 11
4.1.1 Interacting with the User 11
4.1.2 Monitoring Executing Code 12
4.1.3 Updating and Managing the Displays 12

4.1.3.1 Display Hardware Considerations 13

'I.!

CONTENTS

4.2 Visualization Descriptions 13
4.2.1 The Visualization Description

Compiler/Linker 14
42.2 Picture Descriptions 16

4.3 The Visualization Description/Template Editor 18
4.3.1 Animation 19
43.2 Specifying Graphical Layout 19
43.3 Template Code 20

APPENDICES

A. PROGRAM VISUALIZATION EXAMPLES A-1

B. PROGRAM DESCRIPTION TECHNIQUES B-1

B.1 Flowcharts B-1
B.1.1 Analysis B-i

B.2 Nassi-Shneiderman Diagrams B-2
B.2.1 Analysis B-3
B2.2 Programming Support System B-3

8.3 HIPO Charts B-4
B3.1 Analysis B-4

B4 GREENPRINTs B-5
8.4.1 Analysis B-5

8.5 PYGMALION B-8
8.5.1 Analysis B-8

B.6 The Mini-LOGO Animation System B-8
8.7 The Micro-PL/1 Animation System B-9
8.8 The SP/k Visualization System B-9
B.9 The Sorting Animation System B-9
B.iO CDEBUG B-10
8.11 Summary B-10

C. REFERENCES C-1

N

Design For a Program Visualization System ii

ILLUSTRATIONS

Page

4.1 Visualization Description Compilation Process 15
4.2 Picture Description Code - Line 1 17
4.3 Picture Description Code - Line 2 17
4.4 Picture Description Code - Line 3 17
4.5 Picture Description Code - Line 4 17
4.6 Picture Description Code - Line 5 17
4.7 Picture Description Code - Line 6 17
4.8 Picture Description Code - Line 7 18
4.9 Picture Description Code - Line 8 18
4.10 Picture Description Code - Line 9 18
4.11 Picture Description Code - Line 10 18
4.12 Picture Description Code - Line 11 19
4.13 Picture Description Code - Line 12 19
4.14 Picture Description Code - Line 13 19
4.15 Picture Description Code - Line 14 19
4.16 Picture Description Code - Line 15 20
4.17 Picture Description Code - Line 16 20
4.18 Picture Description Code - Line 17 20

B.1 Flowchart Symbols B-1
.2 Process Symbol B-2

B.3 Decision Symbol B-2
B.4 Iteration Symbol B-2
B.5 BEGIN-END Symbol B-3
8.6 HIPO Components B-4
B.7 GREENPRINT Example B-5
8.8 GREENPRINT Objects B-6
8.9 Annotated GREENPRINT B-7

*

'I

,(

Design for a Program Visualization System 1

system could encourage (or even enforce) the use of
1. INTRODUCTION these tools as an integral part of a system develop-

ment effort. As such, it could provide a useful vehicleThis is the final report of a six-month study by Corn- frtereprmna vlain
puter Corporation of America (CCA) to determine the

feasibility of a Program Visualization (PV) system-a 1.1 Motivation
system that uses computer graphics to create and
maintain computer software. Automated visualization A program is a precise description of a process or
of computer programs offers the opportunity to system. Programming is the activity of expressing
improve the productivity of the limited number of pro- such descriptions. Machines execute these descrip-
grammers who will be available to work on the tions; that is, they obey their constituent instructions or
increasingly large and complex software systems of commands to carry out a process or simulate a sys-
the 1980s. The study focused on laying the ground- tem.
work for the development of a tool that could be repli- Some programs are so simple and unimportant that
cated for use by programmers working on actual sys- they can be conceived, developed, used, and even
tems and applications, thrown away in a single sitting at an interactive corn-

The goal of Pv is to facilitate the understanding of puter terminal. The art of "conversational program-
programs by people. To visualize means "to see or ming" has been developed to facilitate such expres-
form a mental image of." A Pv system would aid pro- sion.
grammers in forming clear, correct mental images of However, the bulk of programs upon which society
the structure and function of programs. It would aid relies are more complicated. They have been
both the producers (writers) and the consumers developed and refined by many individuals working
(readers) of programs. The primary objective is to over a period of many years. There is a growing body
make it easier to express the mental images of the of programs that are sufficiently large and complex
producers and to communicate those mental images that they cannot be comprehended in their entirety by
to the consumers. any one person.

There is no hard and fast line dividing the writers of This situation presents serious problems for both the
programs from its readers. As a program evolves, it creation and maintenance of programs. If the imple-
passes through many representations and undergoes mentors of a large system are to ensure that it
many transformations from representation to represen- operates according to the specified requirements, they
tation. A written description in some representation is must be able to describe programs using techniques
read, visualized, and transformed into another that are more powerful than reading individual lines of
representation. The reader may be a d;fferent indivi- code.
dual than the writer, or he may be the same person The maintainers of a system have an even more
returning to the program at a later time. The transfor- serious problem. With the increase in the complexity
mation may be a refinement into another, perhaps of software projects -involving more programmers
more detailed, language, or it may be another expres- and longer life-cycles -normal turnover of personnel
sion in the same language that attempts to correct an ensures that some of the original designers of a pro-
error in the previous version. gram no longer will be available by the time it is

A PV system would be used by programmers delivered to the user. Once the program is in use and
charged with creating and maintaining large computer maintenance is required, it is likely that the people
programs. The system would allow these program- called upon to do the maintenance will have had little
mars to manipulate graphical representations of pro- to do with the original implementation.
grams. Such a facility would enhance their ability to It is imperative that techniques be developed that
understand how the programs work, and to change will allow such people to quickly understand the struc-
them and combine them with other programs. ture of a complex program and explore the interac-

It would provide a framework in which software pro- tions between its components. There must be a
ductivity tools developed at different places could be mechanism that preserves the original design goals
combined in a coherent manner, making them more and implementation concepts in a manner that makes
usable than they would be separately. These tools them available to the maintainer and ensures their
includi- editors and illustrators. Editors must be consistency with the program itself. In the absence of
responsible for enforcing standards of style, con- information like design goals, there must be a tool that
sistency, clarity, and legibility In both the form and the allows the maintainer to probe the actual code. Such
content of the writings. Illustrators must be responsi- a tool would help the maintainer re-examine the origi-
ble for producing pictures, diagrams, charts, and nal requirements, decide how they should be changed,
movies that will further enhance the reader's locate the relevant code, and make the appropriate
comprehension of the intentions of the writer. A PV changes without introducing any untoward interactions£i

L I Iii

* 5

2 INTRODUCTION

with other parts of the system. module is performing its intended function. Further-
The techniques of Pv can be useful in all the stages more, the graphical representations of programs could

of a program's life cycle: be used as a means of interacting with a programming
environment. This would allow a programmer to mani-

I, Listing the requirements that the program pulate and combine programs by changing their
must satisfy. corresponding visualizations.

2. Specifying the design of a software system, to The idea of using computer generated images to
visualize programs was developed in the earliest days

meet the requirements. of computer graphics [HAIBT], ISTOCKHAM], and

3. Carrying out the coding of the system, follow- (KNOWLTON]. However, only recently have the
ing the plan of the design. requisite hardware and software advances been made

which would allow such techniques to become cost-4. Debugging the code, to guarantee that it con-

forms to the design and fulfills the require- effective for a broad range of applications.

ments. A PV system could capitalize on recent progress in
the graphical representation of information and low-

5. Maintaining the system, to keep it functional cost color graphics. The system that is envisioned will
despite changes in the requirements and the allow a person maintaining a complex software system
discovery of new bugs. to access many graphical representations. These

6. Helping the end-user use the program by include static descriptions such as module hierarchies

showing how it operates and how it arrives at and requirements specifications, and dynamic illustra-
thewinsults it prtes ndtions such as procedure activations and storage allo-
the results it presents. cations. It will be possible to display several different

The challenge of PV is to encompass these representations of the same portion of a system (or the

disparate phases of the programming process within a same representation of several different portions)

unified conceptual framework. simultaneously, through the use of multiple screens or
multiple viewports on one screen. The level of detail

1.2 The Role of Graphics presented in any given viewpoint can be varied to
cover any point along the range from the entire system

Graphical representations have demonstrated their to discrete lines of code.
usefulness in a variety of endeavors as a means of Special attc;ntion will be accorded to the means by
illustrating complex relationships among components which the various representations are specified. The
of a system. It would be inconceivable to build a ship, envisioned system will avoid the necessity of modify-
airplane, plant, factory, or piece of electronic equip- ing the program under observation by providing an
ment without the use of diagrams. These illustrations external mechanism for selecting program constructs
can capture essential features while suppressing to be displayed and symbols to be employed in
extraneous detail. Often, they can be understood more displaying them. A system of default representations,
readily than ordinary text. generated using knowledge about the particular pro-

While such illustrations find widespread use in com- gramming language, will provide the user with an ini-
puter programming, they are almost always manually tial visualization. External descriptions can then be
generated. They have a tendency to become obsolete defined by the program author or maintainer to aug-
as the software they describe is implemented and ment or replace these default representations.
changed. Also, the lack of tools for creating animated The intention is to provide an environment for pro-
images restricts the ability to illustrate an essentially gram creation and maintenance that makes the advan-
dynamic process such as a computer program. tages of graphical representations available without

Computer graphics offers the possibility of generat- placing an excessive burdci on the people responsi-
ing dynamic illustrations-illustrations of computer ble for implementing and maintaining the programs.
programs while they are running. These illustrations In this way, graphical program illustration can become
could be made to correspond to the most current ver- a general-purpose tool applicable to a wide range of
sion of a program, allowing a programmer to observe real world problems.
the actual operation of a system. By providing suit-
able tools for specifying the portions of a system to be 13 Approach
illustrated and the manner in which they should be
represented, interactions among various system com- This report describes an envisioned PV tool that will

1A ponents could be observed. If suitable design infor- aid the maintainers of large (10"6 lines of code),
marion were stored in the system, it could be used in complex software systems. This tool is targeted prl-

the evaluation of running code to certify that a given manly for use with programs written in ADA (ADA). the
proposed standard DOD language. ADA is especially

Design for a Program Visualization System 3

well suited to Pv because it provides high-level, user- 2. A CONCEPTUAL FRAMEWORK FOR
definable constructs which make much of the program PROGRAM VISUALIZATION
design explicit in the code itself. Many other, less A framework for Pv must categorize and classify
powerful languages require the use of comments or those aspects of computer systems that can be visal-
external documentation to explain how many seem-ingl unelatd pogras ad daa sructresfitized. The following is a first attempt at such a clsifi-ingly unrelated programs and data structures fitcain
together to form a coherent set of objects and actions.

This report addresses two issues involved in build- 1. System requirements diagrams
ing a Pv system:

2. Program function diagrams
1. The design of a visual language for describing 3 P

programs and combining them, together with . rogram structure diagrams
the processing, translation, and display rou- 4. Communication protocol diagrams
tines necessary to create a visualization of a 5. Composed and typeset program text
program.

6. Program comments and commentaries
2. The design of a system that uses such a

visual language to examine and modify com- 7. Diagrams of flow of control
puter programs. 8. Diagrams of structured data

The various implementations will serve to explore a 9. Diagrams of persistent data
variety of techniques on a powerful, high-resolution,
display environment, with an eye towards identifying a Many of these visualizations can be either general
useful subset of techniques that could be impe- or specific. General visualizations portray a program
mented on a low-cost terminal costing in 1985 what an without referring to a specific activation. Specific
ordinary alphanumeric terminal costs today. visualizations are keyed to the execution of a program

or some specific set of data. General visualizations
1 A Outline of Report can be either static or dynamic. Static visualizations

The remainder of this report is organized into the portray a program at some instant of execution time orfollowing sections: portray those aspects of a program that are invariantf i sover some interval of time. Dynamic visualizations

Section 2 consists of an examination of the evolve and unfold under the control of the executing

software process and suggestions for the type program.
For example, we can show an abstract represents-of outputs a PV system might produce. tion of program data for all time, at some instant of

* Section 3 is a description of how a user might time, or evolving through time. We can show how a
interact with a Pv system in the course of program is organized into modules, which modules
creating and maintaining a program. have activation records at a particular instant, or how

moduies are activated in the course of program execu-i Section 4 is a presentation of a possible tion.
implementation of a PV system. These visualizations can be produced and used

* Appendix A contains examples of some either singly or in combinations. Flow of control may
current and contemplated visualization tech- be most meaningful if portrayed in relationship to pro-
niques that could be used for illustrating pro- gram code or module structure. Input-output pairs
grams and data structures. may be displayed in relationship to the underlying data

structures of individual program modules. Dynamic
* Appendix B contains the results of a survey of

k prior research in the areas of program illustra- dispiays may be superimposed on static or general
tion and graphical tools for software develop- displays that provide the context within which the

edisplays are interpreted.~ment.
In the following subsections, we describe each of

" Appendix C is a list of references. the visualization classes in more detail. In the final
subsection, we present a conceptual breakdown of
visualizations Into the separate aspects that must be
specified.

.- ~ -

4 A CONCEPTUAL FRAMEWORK FOR PROGRAM VISUALIZATION

2.1 System Requirements Diagrams sample inputs significantly affects the utility of this

A computer program always exists as part of some technique. In many cases, certain values or classes ofA copute prgramalwys eist as ar or-m values are critical to understanding a function. For
larger system. Therefore, PV tools must assist in pr- example, in understanding a factorial function, impor-

traying the function and structure of that system. The tant values or classes are 0, 1 positive integers, nap-

tools should also aid in specifying the constraints tive integers, real numbers, and non-numerics.

imposed by the system on the program.

One very powerful method of describing system 2.3 Program Structure Diagrams
structure is the IDEF or SADT technique developed by
SofTech [ROSS]. An IDEF model is a graphical "How is the program organized?" is often the
representation of a system in terms of its subsystems second question that we ask about a program. in
and the data and control flow that link them together. many cases, a program's structure can be expressed
This method deals quite naturally with the hierarchic in terms of a hierarchical collection of modules and
nature of most systems. It provides a methodology for constituent modules.
organizing the bookkeeping associated with large, Structure diagrams and function diagrams should be
complex system descriptions. A systems analysis in used in tandem. At the top level, the task of the pro-
terms of an IDEF model can provide the foundation for gram should be associated with a corresponding
automating some of the subsystems. The role of a structure definition. Each constituent module of the
program automating a subsystem can be understood structure definition should have associated with it a
in the context of the system within which it is to func- function diagram portraying its task. This hierarchical
tion. decomposition of coordinated function and structure

To complete a requirements specification, the con- descriptions should be continued until the resulting
straints on the program's design must be added. modules are of an order of magnitude of one page of
These constraints include execution speed, program code.
size, user interface style, implementation vehicle, and It appears that the HIPO (Hierarchy plus Input-
cost. Further investigation is needed to determine the Process-Output) technique [STAY] consists of the coor-
role of graphics in describing these specifications. dinated use of program function and structure descrip-

tions. It is necessary to investigate the HIPO metho-
2.2 Program Function Diagrams dology further and perhaps to enhance its use of

"What does the program do?" is usually the first diagrams and other visualization aids.

question we ask about a program. In many cases, a 2.4 Communication Protocol Diagrams
program's function can be expressed as a mathemdti-
cal function - a mapping from program input to pro- Once it is known how a program is divided into its
gram output. We can talk about the relationship of component parts, it is useful to know how those parts
program input to program output in two different ways. communicate. This is especially important when the
We can attempt to characterize the general case; that program consists of many processes running on one or
is, the relationship of any input to any output. Alter- more processors. A visualization of the flow of data
nately, we can simply enumerate a number of input- among modules can be displayed as part of another
output pairs that are in some sense typical of the gen- diagram. For instance, the program structure diagram
eral case, and leave the rest to the inductive powers of can be overlaid with lines showing the data paths
the reader. between modules. By using this technique dynami-

A statement of the program's function in the general cally, the actual flow of data can be monitored during
case is a more powerful and useful description than an execution.
enumeration of sample behaviors. Yet it is an abstrac- A practical example of this approach is the System
lion that is conventionally explained in terms of prose for Distributed Databases (30D-1) TROTHNIE et al., a
and mathematics rather than diagrams. It is very diffi- distributed database system at Computer Corporation
cult to construct diagrams that portray the general of America (CCA). SDD-i employs a color graphics ter-
case. minal to show, in real time, the data transferred

S- Sample behaviors, on the other hand, can bp por- between sites on the ARPANET. The terminal monitor is
trayed by pictures or diagrams of the output data pro- useful as both a aemonstration and debugging aid.
duced from particular input data. One approach to the
visualization of program function is to provide a "case- 2.5 Composed and Typeset Program Text
book" through which the user can browse. The user The central activity in the visualization of programs
can induce a model of what the program is supposed has always been reading program code. While alter-
to do by seeing what it actually does on a carefully
selcted set of sample inputs. The choice of these native graphical techniques are proposed here, there
sp

Design for a Program Visualization System 5

will be cases where code must be examined. This analogous to prefaces, introductions, postscripts, and
task can be made significantly easier than it is at critical expository analyses. Both comments and com-
present. mentaries are an important part of conventional pro-

Since the Middle Ages, typographers and printers gramming discipline, yet they fall far short of attaining
have developed tools and conventions for printing their ultimate potential. How car they be improved?
documents that can be read and understood easily. The greatest potential for improvement cannot be
Since its inception, computer science has almost brought about by a technological "fix." The obstacle is
totally ignored these tools and conventions, making the shortage of good writing skills among program-
programs much harder to read than they need be. mes and documentation specialists. The Commen-

Some relevant typographic tools that could be ftry on the UNIX Operating System [LIONS] is a clas-
applied to the publishing of programs are: sic example of the value of well written system docu-

mentation.
1 Typographic hierarchies for distinguishing a A second significant problem area is documentation

program's constituent elements that belong to completeness. This area can be addressed by
various syntactic or semantic categories, developing interactive computer systems to check that
Typographic hierarchies are implemented by program documentation meets specified documenta-
the consistent and controlled use of a variety tion standards and to prompt the writer to fill in what
of type fonts, type styles within a font (bold, is missing.
condensed, italic), and point sizes. A third problem is that documentation should be,

but is not, an ongoing process. Although maintenance
2. A rich symbol repertoire employing a wider programmers sometimes will make slight enhance-

range of symbols and colors than is currently ments to documentation to record their "bug fixes,"
used.' documentation is not viewed as a continual process of

3. Skillful composition and layout of a program's enhancing and clarifying the meaning of the program.
constituent substructures. Layout conventions Logically, the original programmer is the person best
include the use of indentation, horizontal para- able to explain what he meant. In practice, however, it
graphing, vertical paragraphing, pagination, is often someone else-who has discovered what is
footnotes, marginal notes, and page headers, going on despite the obfuscation of available
The use of computer graphics also permits documentation-who is best able to explain it to oth-
applying dynamic techniques-such as ers. Technical mechanisms and administrative pro-
colored highlighting -over selected or active cedures should enable and encourage him to do so.
portions of program text. Finally, we should not be concerned only with who

adds what to the documentation at what time. We
By speaking of typesetting and composition, we do should also be concerned with how comments and

not mean that all documentation will be produced and commentaries may be related to the other visualization
used on the medium of paper. On the contrary, pro- mechanisms in the way that is most helpful cogni-
grams will be written and read using powerful, interac- tively. This can be done with riw kinds of interactive,
tive graphics tools. These tools will be designed for multi-media, multi-sensory reading, browsing, and
manipulating structured, and possibly dynamic, text visualization systems.
and pictograms. To enhance readability and
comprehensibility, these tools must provide text quality 2.7 Diagrams of Flow of Control
that is far closer to the standard of today's printing
industry than to the standard of today's computer ter- "What happens when the program executes?" is
minal industry. High quality typesetting and printing another question we ask about a program. We can
on paper, primarily on a demand basis, also will be further refine this question in two different ways. We
required to provide hard copy that is portable, malle- can be interested in the oioer in which things happen
able, and tangible. or in the effect of program execution upon the underly-

ing data. To address these concerns, diagrams of flow
2.6 Program Comments and Commentaries of control and diagrams of structured data are needed.At the top levels of description, diagrams of flow of

Program comments, often known as internal docu- control may be dynamic structure diagrams. They will
mentation, are analogous to the critical annotations of illustrate which modules are activated and in what
conventional literary expression. Program commen- order. They will illustrate how particular modules car-
taries, often known as external documentation, are rying out individual functions are linked together to

I GutenAbg had more ttn 300 symbols in his type case achieve higher-level functions.

- aa - ---- -- ' l'' -'$ - . . .-... ... 1

6 A CONCEPTUAL FRAMEWORK FOR PROGRAM VISUALIZATION

At a deeper level of description, we want to look gram has ceased execution, as in a database manage-
inside particular modules and see how the code exe- ment system. Since the amount of such data is often
cutes. We want to observe iterative loops, recursive several orders of magnitude larger than that contained
procedure calls, and conditional ana case selection in the memory of the computer, different techniques
mechanisms. Flow charts, Nas.i-Shneiderman are required to visualize it. Furthermore, the user of a
Diagrams [NASSI and SHNEIDERMAN], and GREENPRINTS PV system often will be much more interested in the
[BELADY, CAVANAGH and EVANGELISTI are a beginning, physical organization of persistent data if it resides on
However, they portray only the static structure and the some storage medium that is not perfectly random-
potential flow of control rather than the actual flow of access, such as a disk. Fortunately, the database
control during program execution. community has developed a rich set of symbols that

can serve as a starting point in visualizing persistent
2,8 Diagrams of Structured Data data.

"What happens when the program executes?" can 2.10 Summar
also be answered in terms of the database upon which
the program is computing. This database includes the We have developed a framework for PV in terms of
program input when execution is initiated and the pro- nine classes of methods for presenting information
gram output when it is terminated. The database also about a program graphically and often dynamically.
includes the variables that are central to the program's These methods may be motivated and understood in
function, such as the data being sorted by a quicksort, terms of the stages of a program's life cycle presented
and the variables that are incidental to the program's in Section 1.1. To assist in describing the require-
function, such as the artifacts of a particular piece of ments of a program, we have system requirements
code or programming technique. diagrams. To assist in describing the design of a

The visualization of structured data appears to be software system, we have program function diagrams
one of the most tractable and powerful of the and program structure diagrams (ideally, used
approaches we have presented. Baecker's pilot film together). To assist in describing the code of a pro-
on sorting algorithms [BAECKER] and the work of gram, we have composed and typeset program text.
Knowlton [KNOWLTONI, Hopgood (HOPGOOD], and oth- program comments and commentaries, diagrams of
ers have vividly demonstrated the power of this tech- flow of control, and diagrams of structured data. To
nique. The Spatial Data Management System (SoMS) assist in the debugging, maintenance, and use of a

,1W [HEROT et aI.] developed at CCA has demonstrated the system, all nine classes of diagrams can be employed.
feasibility of using graphics to access structured data. Thus, a comprehensive and integrated approach to

The major difficulty in applying these methods Pv promises to have great impact on the entire pro-
results from the size and complexity of the databases cess of software engineering. It will do so by contri-
of most interesting programs. It is for this reason that buting to the cost-effective production and mainte-
we have spoken of "diagrams of structured data." It is nance of reliable software.
only through structuring the complexity that we are
able to comprehend and master it. And we will not 2.11 Specifying Program Visualizations
always be able to do this dynamically, for we will need
to stop the program and look around, start it again, I
stop it and back up, and often change our point of ing or requesting the production of a specific program

view. We must be able to browse and explore both in visualization. Although these mechanisms may differ

space and in time. somewhat from class to class, we shall present a con-

Displays of data are in some ways the most funda- ceptual framework that we expect will be general
mental unit of Pv. One can argue that (1) program enough to apply to the nine types of visualizations
function diagrams expressed as input-output pairs are described above. In this description, the "visualizor" is

a special case of the display of program data, (2) pro- the person who creates or specifies the semi-

gram structure diagrams will provide insight only down automatic production of a visualization.
to the level of module organization, and (3) flow of A visualization can be defined by specifying six

control is easily induced from observing changing separate aspects:
data.data.1. The subject. What aspect of the program's
2.9 Diagrams of Persistent Data structure or behavior is to be visualized? The
2visualizor's first task is to specify what he

An important category of structured data is that wants to look at. He must:

which remains in the computer system after the pro-

Design for a Program Visualization System 7

@ Indicate whether he wants to see the 6. The context. How is each new illustration to
entire program or only a particular be related to previous illustrations of the same
module. or of a different class? The visualizor's final

e Specify the level of abstraction at task is to relate each new visualization to the

which he wishes to view the sublect context established by previous ones. This
he has selected. may be done by saving previous illustrations

on a stack, juxtaposing or superimposing
* Select the variables or data structures several of them, or displaying dynamic infor-

he wants to make visible. mation on a static reference background.

* Designate the control structures Thus, we might display flow of control as
whose flow he wants to observe, arrows over a representation of program code

or module structure.
2. The symbolism. What graphic representa-tions are to be used in the visualization? The A PV system must provide a flexible mechanism for

visualizor's second task is to specify how the specifying the manner in which a visualization issuectof thecn sukizatio is to speiy ote, displayed to the user. It must be possible to createsubject of the visualization is to be portrayed. these specifications in a way that enhances rather
Is hierarchical module structure to be than disrupts t user's understanding of the structure
represented by a tree or by nested regions' of a complex system. For example, transformations
Is program code to be represented literally or
by an abstraction such as Nassi-Shneiderman from one level of detail to another or from one part of
diagrams or GREENPRINTS? Is a stack to be a program to another must be done in a way that

makes clear how the new and old views are related.represented by a vertical array of boxes, a sin-

gle colored box, or a dynamic bar? 3USERINTERFACE
3. The composition. Where are the visualiza-

tions to appear in terms of the spatia! dimen- In this section, we describe a Pv system from the
sions of the display medium? The visualizor's user's viewpoint. The section is divided into separate
third task is to specify where the subject is to discussions of user requirements and interface design
be portrayed. This is perhaps best issues.
approached through two independent deci-
sions. The first involves choosing the location 3.1 Requirements
for each subject in page coordinates on a sin- A Pv system must offer the programmer the ability
gle, large display page. The second step to increase his understanding of large programs. The
involves mapping various windows of the system must satisfy this goal whether or not the pro-
display page onto various viewports on one or grams operate correctly and whether or not the user is
more display surfaces. the author. Moreover, the system must not require a

4. The event. When are visualization snapshots significant increase in the effort required to create a
or frames to be created in terms of program program or its visualization. To do this, three subgoals
execution time? The visualizor's fourth task is must be satisfied. The system must:
to specify when the subject is to be portrayed.
Should "snapshots" be taken at some instant, 1. Employ a coherent visual language for pro-
during some interval, or throughout program gram illustration.
execution? Should the "camera" be running 2. Be well integrated into the software develop-
only when some predicate is satisfied? ment process.
Should the camera turn on or off when some
predicate becomes satisfied? 3. Provide usable visualizations with a minimumof work.

5. The dynamics. How is screen time to relate
to program execution time? The visulizor's
fifth task, in the case of dynamic visualize- 3.1.1 The Visual Language

,Je tions, is to specify how program execution
time is to be portrayed in screen time. This The quality of the symbols used to represent pro-be done by establishing a mapping in gram concepts is critically importance to the successmayof a Pv system. These symbols should be pa of a
advance of running the program or by putting of esined se lsnghoged Te pert of
the mapping under the visualizor's interactive carefully designed visual language. The language
control.

-] -- II . . . - - -

8 USER INTERFACE

should be both easy to learn and powerful enough to 3.12 Integration
describe most program constructs without requiring There are two main reasons why a PV system should
arbitrary extension. The number of primitive symbols b e are t d in o the pcsstef sowd
must be small enough to be recalled easily and varied be carefully integrated into the process of software
enough to be distinguished easily. development. First, any improvements in the area of

Ihese goals can be furthered through the use of the initial requirements analysis or design wll be reflected
enhanced visual richness of an interactive, computer by fewer problems further on in the development pro-
graphics environment. For example, a small number of cess, when problems are more expensive to solve.
symbols can be given various shades of meaning Since many of the problems of building and maintain-
through variations in color, size, position, line weight, ing large programs can be traced to errors or over-
background, and changes over time. sights in the initial areas, this is an important benefit.

At the same time, careful attention must be paid to A more important benefit is that much of the infor-
pragmatic limitations of the user, such as: mation manipulated in the early stages of system

development would be of great assistance in the later
* The number of parameters that can be differen- stages. If this information were captured in machine-

tiated. readable form, it could be used to generate more
meaningful, graphical representations of a running pro-

* The number of objects that can be remembered gram. This situation is especially common when low-
in short and long term memory. level languages-such as assembler or Fortran-are

used. In such languages, the constructs used by the
Also important are the limitations of the display designer may bear little surface resemblance to the
medium, such as: actual code that is written.

For example, program constructs such as linked
* Its spatial and color resolution. lists might be implemented as Fortran arrays. The pro-

* The number of objects that can be displayed grammer might explain the connection between the
effectively, two in a comment statement or in an external, hard

copy document. However, the production of a com-
* How frequently objects can be changed. puter generated picture showing the data structure as

a linked list will require some machine-readable indi-These user and media limitations can be dealt with
through the imposition of clear hierarchies. Such cation that defines the mapping of the data to the pic-

ture. While this could be done by the person charged
hierarchies will allow a large amount of information to ture.fWhile this c ould be arbedbe ~ with fixing bugs in the system, it would be far betterbe managed with a comparatively small number of

for the responsibility to be fixed with the original
objects.

All the above mentioned issues fall into the field of designer or implementor of the system.
graphical design. They underscore the importance of Section 3222 shows how this goal of linking earlydrawing upon knowledge developed in that area. One design data with actual coding can be achieved
drawing uon knwledia i eelopd in that esin O ne through the use of an intelligent program editor. Such
subject of special interest is in the design of symbol an editor would provide macro facilities that
systems. These range from specialized signs-such encourage the input of structured information. The
as those developed by the Department of Transporta- editor would offer program templates that provide the
tion for public transport-to extended universal sym- repetitive sections of code used in describing common
bol repertoires.constructs.

In these extended repertoires, a relatively small TonsutThe input required by such a system will not be
number of symbols can be extended with a consistent seen as an unreasonable burden on the programmer.
set of prefixes and suffixes to form an easily under- This is because it replaces the need to create conr-
stood language. Such a language will draw upon the
many symbols and display methodologies that already tional documentation, usually considered to be a but-
have been developed for various levels of software denaome task. If the input of the required document-

havebee deeloed fr vrios lvelsof oftaretion yielded some immediate benefits, such as check-
description. It will provide a framework within which in errorsdinote progra anriin an as means

the user can move among different levels and types of of taking notes, the task of persuading programmers to
displays, while maintaining common symbols and enter documentation might actually be eased. Infor-
points of reference. For instance, objects present in mation like the results of error-checking also could be
different displays will maintain as similar an appear- o use desin acceptancecdinsats ad
ance as possible or would bear some identifying of use in designing acceptance demotrations and

testing plans.
characteristic. In addition, this visual language will
provide a mechanism for adding motion to symbols
that were previously static.

L--- ,

Design for a Program Visualization System 9

An alternative that may be attractive in some cir- employed. Some mechanism must be provided to
cumstances is to create a new job classification, pro- manage the large set of modules and their various
gram illustrator. This person would assist in visualiz- visualizations. In this way, the user can alter which
ing novel or complicated constructs. portion is selected, how it is displayed, and at what

level of abstraction it is viewed.
3.1.3 Defaults The solution proposed here is to allow the user to

A PV system must be usable with very large pro- manage the visualizations by employing a space com-
grams. Some of these programs may be written either posed of a hierarchy of two-dimensional surfaces. The

without the aid of the integrated tools described above levels in this hierarchy will match the structwe of the

or with insufficient use of those tools. Accordingly, the program under investigation. As one descends the

system must have a way of generating reasonable spatial hierarchy, one views successively more

default visualizations without any additional informa- detailed representations; for instance, increasingly

tion. lower-level modules. Within a branch of the hierarchy,
The resulting displays often will be useful in and of one can move on any surface to select the modules orThe esutin diplas oten illbe sefl i an ofdata structures to be displayed.

themselves. This is especially true with a language The visualizations at any position can be one of

such as ADA, which allows the use of high-level pro- The vis:

gram constructs. When a more elaborate display is three types:

required, the default representation can serve as the
basis for specifying more elaborate visualizations. 1. Requirements diagrams

Thus, the user need not create a visualization from 2. Function diagrams
scratch. He can incrementally modify one provided by 3 Data diagrams
the system, selecting alternative symbols, portions of
programs, and dynamics. By starting with a default They can be either formatted-as diagrams and
visualization, such user input can be stated in terms of typeset code-or unformatted-as comments and
the graphical representation instead of a procedural commentaries on the code. They can be either static
language. or dynamic. In addition, requirements and function

The default visualization mechanism will automati- diagrams can include visualizations of control and
cally analyze programs. Variables will be selected for data flow.
display on the basis of frequency of reference and
interdependencies of programs. For example, a vari- 3.2.2 User Controls
able used for communication between two processes
could be displayed along with the high-level represen- There are three classes of actions that a user may
tation of those processes, with a line connecting the perform:
variable to the two processes. This facility will aid the
user in forming hypotheses about the operation of the 1. Specifying views of a program
program and in selecting more detailed displays. 2. Entering information about a program

A facility for creating new symbols from existing
primitives and/or composite symbols is required. This 3. Interacting with a program

facility should be sufficiently powerful to eliminate theSichemyavtoprrmanofhseciiis
need for manipulating the graphics in the actual Since he may have to perform many of these activities
implementation language in all but the most unusual in parallel and since it is often useful to be able to
cases. compare different parts of a program or different views

of the same part, the system provides the ability to
3.2 User Interface Design Issues segment the one or more display screens into win-

dows.
The preceding subsections have set forth the

requirements that must be met by a Pv system. Here, 3.22.1 View SpecIfIcation
we show how such a system might appear to the user.The design of the user interface must be further When the user first starts up the system, one win-
Thdesignpedo the serh ierfaest h dow presents a default representation showing an

abstract view of the entire program. Any portion of

3.2.1 Program Space this display may be selected for display at a more
detailed level.2 This process may be repeated until the

Creating and maintaining a large and complex pro-
gram requires an easy way for the programmer to 2 The &cuat mechanism (continuous or discreet zooming. mou
select among the various visualizations that can be selection) and controls (oystick, touch-smiilve sacn, tablet)

would be determined as part of a research program.

....... ...

10 USER INTERFACE

actual code is displayed. For any particular location new way of building software systems. Rather than
and level of detail, the user has a choice of viewing typing in lines of code, the user can combine pictorial
any of the nine types of diagrams described in Section representations of programs.
2. This section proposes a graphical program editor,

It is intended that the user will seldom need to integrated with intelligent text editors developed else-
make direct reference to the actual source code to where, that would perform the following four services:
select visualizations of the program. Graphical
representations of all programs, processes, and data 1. Providing templates of commonly used con-
are provided by the system. These can be manipu- structs
lated to control the level of detail that is displayed or 2. Interfacing to modular programming inventories
to provide alternative visualizations.

If the user needs an unusual display or wants to 3. Checking consistency
display some aspect of the program in a nonstandard 4 Checking design rules
way, he has two options. He can select additional
graphical symbols to illustrate some part of the pro- Templates provide the ability to input standard con-
gram. This will usually require entering more informa- structs with less effort and less opportunity for errors
tion about what the program is supposed to do. As than when typing them in by hand. By hitting the
such, it constitutes an addition to the general store of appropriate function key and typing a few characters,
knowledge about the program. the user can cause the system to provide a formatted,

For example, the programmer may know that several syntactic skeleton that contains the keywords,
variables taken together describe one aspect of the matched parentheses, and other punctuation marks of
program and thus should always be displayed a given statement form. The template includes place-
together. This display might take the form of a prede- holders at each position where additional code is
fined graphical symbol, such as a rectangle, that has required. This approach was used in the Cornell Pro-
its size and shape defined by the values of the vari- gram Synthesizer for PL/CS rTEITELBAUMI.
ables. Just as templates aid in "programming in the small,"

A second option is available if there are no existing the use of modular programming inventories provide
graphical symbols adequate to express the concept in the same advantages in "programming in the large."
question. A symbol creation program is provided Such inventories provide the building blocks for per-
which allows the user to define interactively a new forming the kinds of manipulations required in any
symbol. To do this, the user combines graphical primi- large system. Data and control flow among modules
tives and existing symbols; e.g., combining two rectan- are indicated graphically. There is automatic verifica-
gle symbols to create a "nested rectangle." tion that formal parameters are of the appropriate type

and number.
3222 Entering Information About a Program Regardless of whether code is entered through tem-

Information about a program is entered into the sys- plates or by hand, the editor checks for consistenCy
tem at many points in a program's life cycle. In the within the program in accordance with the rules of the
early stages of requirements analysis and design, the language. It ensures that variables are declared
user may input IDEF-like diagrams describing the role exactly once, type conventions are obeyed, and state-
the program is supposed to play and HIPO-type ments are in legal syntax. Violations of these con-
diagrams describing the structure of the design. Later, straints produce a warning message on the screen.
as the program is implemented, actual lines of source The design of the warning mechanism must be con-
code are typed in or retrieved from a library. In the sidered very carefully to ensure that it is done in a
debugging and maintenance phases, the program will manner that is least likely to be annoying but most
be modified. New insights will be gained (or old ones likely to be heeded. For example, undeclared vari-
rediscovered) that should be incorporated into the ables can be accumulated in a window on the screen,
repertoire of visualizations of the program. along with the system's best guess as to how the vari-

At each of these stages, it would be useful to have a able should be declared to agree with its context. At
tool that eliminates as much of the repetitive part of any point, the user can type in declarations, causing
the job as possible and that verifies the correctness of the variables to disappear from the window. Alter-
the input as it is entered. Nowhere is this need more nately, he can move his cursor to the window and
apparent than in the entry of source code, if only specify the type there, implicitly declaring them. Or he
because of its sheer volume. The graphical may decide that the system has guessed correctly and
representation of programs offers the opportunity for a therefore retain its decision.

-.

Design for a Program Visualization System 11

Design rule checking will operate in a similar description compiler compiles and links C or ADA
manner. The program will be checked against design source code. It produces a visualizer-executable load
principles defined as part of the ADA development file and a separate visualization description file. Visu-
effort. alization descriptions and the visualization description

compiler are discussed in Sections 4.2 and 42.1.
322,3 Interacting with a Program The visualization descriptions automatically pro-

No debugger is complete without a method of duced by the visualization description compiler will

interacting with a program. In a PV system, this suffice in some applications. However, specialized

activity might make use of two or more windows on graphical representations of programs often will be

the display screen. For programs designed to com- required. This is particularly true for program docu-
municate with a terminal, one window simulates the mentation. A highly interactive visualization descrip-
screen of such a terminal. Characters typed by the tion editor is provided for manual enhancement of

user appear thern end output from the program is visualization descriptions.
directed there. Meanwhile, other windows can be The visualization description editor provides a

used to examine the operation of the system as library of graphical representations for general pro-

described above. Breakpoint locations can be indi- gram constructs at various levels of abstraction.
, These graphical representations are referred to as

cated by pointing to the corresponding location on a Tee Tept s are presen ed to s

program structure diagram or typeset listing. templates. Templates are presented to the PV system
Alternately, the programmer can use the same user as simple graphical primitives that can be used in

displays to specify events or locations that demark a program's visualization. Internally, a template is a
areas of interest. When these areas are active, the visualizer-executable set of instructions that results in

program is slowed down to a visible speed. At other the production of the desired image. Templates are

times it runs at normal speed, unobserved but much included in a visualization description through simple,

faster. Data structures internal to the program can be graphical interaction with the visualization description

modified by editing their visualization on the user's editor. The editor also provides the means to create
new templates. In Section 43, the visualization

screen. description editor is discussed more fully.

4. IMPLEMENTATION APPROACH 4.1 The Visualizer

In the design described in this report, the graphical The run-time visualizer executive of the Pv system
representation of programs and systems is produced
by a visualizer run-time executive process. The visual-

izer is used in place of the standard UNIX command 1. interact with the user to determine the
processor, or "shell." The visualizer provides a
dynamic, graphical representation of the executing aspects of the program that are of interest.

program or system, in addition to all the shell's stan- 2. Monitor the executing program to determine
dard executive functions. It is described in more its state.
detail in Section 4.1. 3. Update and manage the graphics displays to

We have seen that there are various views of a pdate ndrmanagete gisiaysto
system- system requirements diagrams, program present the user-requested visualization.
function diagrams, program source code, data struc- In this section, we discuss the issues involved in these
tures. These views can be selected interactively at tasks and suggest possible implementation strategies.
"visualization time" through interactive devices. Such
devices include touch-sensitive video monitor screens, 4.1.1 Interacting with the User
a data tablet, and joysticks. The internal graphical
definition of each view of a program is part of the The visualizer is responsible for handling those user
visualization description of the program. interactions that specify which aspects of the program

A visualization description provides the rules for under study are of interest. It is the visualizer's
producing the visualization of its associated program. responsibility to transform these user requests for visu-
Particular emphasis is placed on graphical semantics: alization into their internal representation. This
what the various aspects of a program "mean" graphi- representation is in the form of predicates based on
cally. Basic visualization descriptions are automati- program activities and data values-such things a
cally generated by a visualization description compiler. module activation, procedure invocation, and data

A visualization description compiler is an extension access. An initial selection of program aspects to
to the standard C or ADA compiler. The visualization

12 IMPLEMENTATION APPROACH

visualize is provided at start-up time by the program's of the single-stepped code can be reduced to the
visualization description, scope of the current block.

Part of PV research would involve investigating the
4.1.2 Monitoring Executing Code preanalysis of source code to make evaluation of vari-

able reference predicates more efficient. One tech-
As stated in the previous section, the program nique to be investigated involves noting the locations

aspects of interest to the user are specified internally of machine instructions generated from source code
by sets of predicates. These predicates determine the that refers to the variable of interest by its symbolic

conditions under which the user wants to be alerted to

activity in the program. The system provides a set of name. Setting breakpoints at only the locations noted

default predicates that produce a display of all activity may provide a significant savings in processing time.

at the chosen level of detail. 4.1.3 Updating and Managing the Displays
Predicates may be set to detect procedure invoca-

tions, variable references (read or write), and violations The visualizer must maintain the program displays
of constraints on variables.3 When a predicate is satis- in response to user visualization requests and changes
fied. an associated graphical action is performed. in the program's state. The visualizer examines the
Hence, the visualizer must be able to detect when the visualization description to determine the graphical
executing code has satisfied a predicate. Ideally, appearance of what is to be displayed at any given
interaction between the visualizer and the executing time. The visualization description describes the
code would be kept to a minimum; this would keep graphical representation of a program and its salient
response times low and execution speed reasonably features; e.g.. input requirements, output produced,
high. and key states during execution. The visualization

The implementation of the Pv system discussed description contains display directions for each level
here would run on a DEC VAX- 11/780 computer running of detail that the user may wish to see. At the most
the UNIX operating system (KERNIGHAN and MCILROY]. detailed level, source code is displayed.
For a number of reasons, such as portability, it is desir- The visualization description of a program is tree-
able to implement the system in such a way that structured. At the top level, there may be a program
minimal modifications to the operating system are structure diagram. More detailed views of each of the
necessary. Fortunately. among the features of the components in this diagram may exist in the hierarchy.
UNIX operating system is the ability of one process to The user may "zoom in" on a particular component to
examine and modify the address space of another pro- reveal a more detailed view (if it exists). Alternately,
cess. Using this feature, a parent process may exam- the user may indicate his interest in a particular con-
ine variables in a child process, set breakpoints in the ponent by touching its representation on the screen.
child's code, and suspend and resume its execution. This would have the effect of selecting the next most

Given this capability, it is easy for a parent process detailed view of that component.
to catch procedure invocations in its children. By set- The user may wish to create multiple windows in
ting a breakpoint at the entry point of the procedure, which particular views of components can be fixed.
all invocations will be trapped. Examination of the These windows would be updated as necessary while
program stack will reveal who the caller was. Thus, a the code was executing, but would remain in place

predicate set to trigger on a particular procedure's while the user manipulated other portions of the
invocation of another procedure can be caught by set- screen.
ting a breakpoint at the called procedure's entry point. Animation of the program visualization is controlled
When the breakpoint is hit, the graphical action is exe- by predicater that become true as program execution
cuted if the calling process is the one specified in the proceeds. Predicates are a natural way of directing
predicate. the system's attention to a particular portion of the

In general, predicates triggered by reference to a code. Predicates that are triggered by procedure invo-
particular variable or by violation of a variable's value cations could cause both the calling and called code
constraints are difficult to implement in an efficient to be displayed.
manner. The executing code must be single-stepped: Variable access and value constraint predicates
the visualizer must examine the variables after each direct the visualizer's choice of what to display. Their
instruction has executed. More efficiency can be action is similar to that of procedure invocation predl-
achieved when predicates are set on variables local to cates. Each predicate has associated with it a graphi-
a procedure or statement block. In this way, the range cal action. The visualizer can deduce what to show
3 In Ws swum on wm "arie" Indicates e ate date based on this graphical action. The following example

ftSi a 8eccons ills w andits describes how this might work.
%+ Iuch cIr ulltbJggl , l l, strin7, d lilt.

- -.---- - A- -

1* g~

Design for a Program Visualization System 13

Assume the user selects a relatively abstract view of allows fast modification of the picture. Pixel write
a program for display, such as a program structure times are on the order of 1.12 microseconds. The out-
diagram. Predicates have been set on a variable that put video format cannot be reconfigured.
has no representation at that level of abstraction. The The AED system is a low-cost frame buffer system
user begins execution of the program. As the program containing a user-programmable microprocessor.
executes, the abstract view is updated; for instance, to However, its 6502 microprocessor is relatively slow
indicate which module is active. At some point, the and has limited storage for display lists. Resolution is
predicates set on this variable become true. If the fixed at 512 by 512 pixels. Several of these in tandem
graphical action indicates that the representation of with a computer controlled, video, special effects box
that variable must be updated, then the visualizer must could simulate multiple windows, but at added
switch to the appropriate view. The visualizer may try expense to the host machine.
to preserve the current view by moving it in a scaled One suggested course of action for a PV research
form to a window that is still displayed when the view project is to select one of the fast displays for use in
changes. Later, should the user wish to return to the evaluating the interaction techniques that would be
previous view, he need only touch the window contain- developed. Selected techniques could then be imple-
ing that view. mented on the slower display. Every effort should be

made to maintain a high level of utility despite the
4.13.1 Display Hardware Consklerations reduction in display capability. The hope is, however,

that display systems of high capability will decrease in
Thecost and become affordable for a wide range of appli-

mats described above are based on implicit assump- cations.

tions about the power and speed of the display sys-

tem. The maintenance of multiple windows on a sin- 4.2 Visualization Osrpin
gle screen requires that the display system contain a

fast, powerful processor that can perform the neces- Associated with each visualizer-executable program
sary tasks itself. It would be possible to maintain mul- load file is a visualization description. The visualize-
tiple windows with a conventional frame buffer, but tion description provides the visualizer with the data-
this would greatly increase both the computational and base necessary to produce graphical representations
input/output loads on the host machine. There would of the program's execution. A visualization description
be a consequent increase in response time-a signifi- has four main components:
cant factor in user acceptance of the system.

Several display systems are available that could 1. Picture semantics
provide sufficient processing power for the PV system. 2. Graphical representation schema
They have the added advantage that they support
resolutions of up to 1024 by 1024 pixels. Such (rela- 3. Program semantics
tively) high resolution systems are necessary to 4. Visualization predicate file
display large amounts of text and detailed diagrams.

The two most powerful display processors commer- The picture semantics specify how the various
cially available are the Ikonas RDS-3000 and the Ram- aspects of the program should be represented graphi-
tek RM 9400. A third system, the AED 512, lacks the cally at multiple levels of abstraction. For example, an
high resolution of the other two, but is relatively inex- overview of a complex system might show process
pensive. All three systems allow the user to download symbols connected by lines to depict inter-process
the controlling microprocessors, giving him customized communication channels. Inter-process communica-
graphics primitives. tion might be shown as message packets moving

The Ikonas system is the most general and most through channels.
powerful of the available systems. It can be config- Zooming in for a more detailed view of a single pro-
ured with multiple processors that can be pipelined. cess might show a hierarchical view of program
Video format is readily switched, allowing it to produce modules, with the active module highlighted. Zooming
NTSC-compatible video for videotaping. Vector write to greater and greater detail will eventually resolve to
times are (claimed to be) 9o nanoseconds per pixel. source code level representation of the program or

The Ramtek system contains one high-speed pro- even into lower levels, such as machine Instructions,
cessor that can be user-programmed. It does support micro-code, or hardware signals. Other views of the
a large virtual picture size of 32K by 32K pixels. Any program will show data structures, flow of control

t portion of this virtual picture can be mapped to the diagrams, etc. The importance of picture semantics Is
screen picture. Pictures can be stored as display lists the of these
that are executed; the results are stored in the frame in s pe ent aie

buffer. Changing the display list and re-executing It

e t

14 IMPLEMENTATION APPROACH

Picture semantics contain "picture descriptions." cessors to prepare programs for visualization. The
Picture descriptions associate parts of programs with visualization description compiler/tinker produces a
descriptions of the graphic symbolism used to visualizer-executable program load file and an associ-
represent them. In Section 2, we discussed program ated visualization description file.
subjects and symbolism within a conceptual frame- This automatically produced visualization descrip-
work (or specifying program visualizations. In Section tion describes as much of the program as can be
42.2, there is a detailed explanation of picture descrip- safely inferred from scanning the program source
tions. code. The automatically produced visualization

The spatial organization of graphical program description is sufficient for some applications, such as
representations is specified by the graphical watching lines of source code execute, However, the
representation scheme. The schema indicates which visualization description often must be manually anno-
view replaces the current view as the user zooms in or tated to include descriptions of complex or abstract
out of a viewport. The schema also selects the program design concepts. The visualization
appropriately related default views for otherwise inac- description/template editor described in Section 43 is
tive viewports. The graphical representation schema used to expand the visualization description in an
specifies the composition and context of the visualiza- interactive fashion.
tion, discussed in Section 2.11. The visualization description compiler is actually a

Unexpected computation in a program should system of four processes:
attract the user's attention. PrW.im aemantlcs allow
the visualizer to graphicalv ' normal and 1. An extended C or ADA compiler
abnormal operation of a arn.f -i .;. the context of
this Pv system, program v!-'w. 1i,-1*,ribe "what the 2. A visualization description generator
program is supposed , rtV jene'al terms of 3. A binary linker
expected data values, ci* t,. -wrt frequency, and 4. A visualization description linker
process idle time. Specin - . ;ation directives are
made available to 9ie , . when an abnormal A schematic overview of the visualization description
program condition is : tected. I'e representation and compilation process is shown in Figure 4.1.
processing of these kinds of program semantics are The extended C or ADA conlplier produces relocat-
related to the mainte nwe of database integrity con- able binary object files very similar to those produced
straints. Common issuea i re discussed in [BERNSTEIN, by the standard compiler. The principal difference is
BLAUSTEIN and CLARKE] and [HAMMER and SARINf. the addition of object code to enable access to the

Knowing what to show, rather than how to show it, is process's address space by the visualizer run-time
the purpose of the visualization predicate file. The executive. This code is simply the addition of the
predicate file selects which aspects of the program "ptrace" system call, which allows a parent process to
will be displayed under what circumstances. The access the address space of its child process.
predicate file is read from the visualization description The visualization description generator automati-
into the visualizer's address space when the program cally creates a basic visualization description from
associated with the visualization description is exe- program source code. Conventional language pro-
cuted. cessing techniques are used to scan and parse the

The predicate file is continuously updated once it is program source. Visualization description production
read by the visualizer and the user begins to interact rules are used to map the program into a visualization
with the system. The initial form of the predicate file, description. A conservative approach to automatic
as stored in the visualization description, serves to visualization description production is taken; namely,
specify default views of the program when visualiza- only the program features that can be inferred from
tion is first initiated. The internal form of the visualiza- the program source with a very high degree of cer-
tion predicate file is a list of predicate-graphical action tainty are described.
pairs. When a predicate is satisfied, the associated The linking process involves two tasks:
action is performed by the visualizer. A discussion of
the efficient representation and processing of predi- 1. Combining binary object files into a visualizer
cate files can be found in (WONG and EDELBERG]. executable program load file.

42.1 The Visualization Description 2. Combining the partial visualization deacrip-
Compilerlilnker tions associated with each binary object file

into a visualizer-Interpretable, complete visual-
A special visualization description compiler/linker is ization description.

used instead of the standard C or ADA language pro-t __

Design For a Program Visualization System 15

code."a

desciption tomplete-M Nbrary

F~gue 4. ViaallztlonD..clptln C Rrpaton oes

IromPorm eeito

16 IMPLEMENTATION APPROACH

These two tasks are carried out by separate op coD, AMuomWnvs
processes: the binary linker and the visualization
description linker. The binary linker performs the combine
functions of the standard UNIX linker. The visualize-
tion description linker combines partial visualization EXPLANATION
descriptions into a single, complete visualization The combine instruction combines the image in the
description file. This visualization description file is picture workspace with the image on top of the picture
then associated with the load file of the program it stack. The combined image becomes the new con-
describes. tents of the picture workspace. The top image is

removed from the picture stack.
4.22 Picture Descriptions

o coDa ARGUNEYTS
All graphical symbols used to visualize a program

are specified by the picture description component of frame
the picture semantics. A different picture description
is provided for each view of every program subject in EXPLANATION
the program. In Pv terminology, a program subject is The frame instruction encloses the image in the pic-
simply any "thing" or "aspect" to be visualized; for ture workspace within a frame.
example, a data structure or a program module.

A picture description is actually a program that can oP coo A30U0M33
be executed by the visualizer's picture generator.
The result of executing the picture description is the halt status
production of the desired graphic image. EXPLANATION

The architecture of the picture generator is optim-
ized for the production of graphic images. In addition The halt instruction halts execution of the picture gen-
to a standard register file and data paths, the picture erator. The contents of the picture workspace and the
generator contains a picture workspace that is used value of status are available to the visualizer execu-
to construct graphic images and a picture stack that tive.
allows subimages to be stored until they are combined Basic picture descriptions are automatically pro-
into a complete picture. duced as part of the visualization description by the

Picture generator instructions are oriented toward visualization description compiler. The algorithms for
the task of image production and make extensive use mapping C or ADA source code to picture descriptions
of the picture stack. Representative instructions fol- are related to conventional language translation tech-
low. These instructions will be used in an example. niques. The following is an augmented production

language specification for a portion of the visualization
oP coOS *Auze1111s description compiler that produces picture descrip-

tions for "structs" in the C programming language.
templt templatona-e template-argument (s NOTE: Picture description code to be produced by a

rule's semantic routine is indicated by the ".."
EXPLANATION symbol.
The templt instruction is similar to the subroutine call
of a conventional processor. Template name is the structure3 ::- Iaelements. 4name.,
identifier of a self-contained code segment that takes t *uct*o afae.
its own arguments and produces an image. One combine
might think of template name as the name of a "pic- frae
ture type" procedure that executes primitive graphical halt O.astatus
instructions using vectors, pixels, etc.

owcotaeuuwsalement. : : ' celeent,,011 CODNI ARGIMIS te

I 'elemets. .lmtstac

stack
- combine

EXPLANATION stack

A The stack instruction puts the image in the picture
workspace on the picture stack and then clears the
picture workspace.

f!

____________Design For a Pr)ram Visualization System 17

- EeI~aent : :- eharactr I €lnteger

charaoter> ,::. chr 'oaa.m I [4PntegeIC PCTURE PICTUIR
teapit strling-icon <n~aet latgero. WORKSPACE STACKS

ltgterp ::- int 4aa0e
tepIt integer -con nase b

As an example of picture description code genera-
tion. consider the following C language struct. This
struct contains meteorological data pertaining to a Figure 4.2 Picture Description Code-Lne I
city.

struct

char cltynaa.[32J ; CITYNAI
lnt a&Vprecip
int VetepM;
Lnt lovtemp ; Figure 4.3 Picture Description Code-Line 2
lnt hightemp

veathordata

The visualization description compiler defined by the 1AVEPRECNW I I TNA I
above production rules would generate the following
picture description code:

Figure 4.4 Picture Description Code- Line 3
1. templt stringicon cityname 32

2. stack

3. ternplt integer_icon aveprecip
4. combine

5. Stack AWC

6. templt integer_icon avetemp

7. combine Figure 4.5 Picture Descripiori Code -Line 4

8. stack
9. tempit integer icon lowtemp _________

10. combine
S11I. stack L12. templt integer con hightemp

13. combine Flge 4.6 Picture Description Code-Line 5

14. stack

15. temnpt structicon weatherdata

Is1. combine A G113A11
17. frame

18. halt OK ,tatus

The lines of code are numbered so that they can be FW. 4.7 PJchur* DerI COW-Lf W
referenced in Figures 42 through 4.15, which illustrate
the operation of the picture generator in creating this
graphical representation.

18 IMPLEMENTATION APPROACH

4.3 The Visualization DescriptionlTemplate Editor

Image production by the visualizer is based on rules
CITYNAME embodied in the visualization description. A basic

, mvisualization for a program can be automatically gen-
AVEPRECIP erated by the visualization description compiler. How-

ever, that basic description often must be manually

AVETEMP enhanced. The visualization description/template edi-
tor is the facility for performing manual enhancement.

As discussed in Section 4.2, the picture semantics
section of the visualization description contains picture

Figure 4.8 Picture Description Code- Line 7 descriptions. A picture description defines the graphic
appearance of one view of a program subject. Inter-
nally, picture descriptions are visualizer-executable
programs that result in the production of the desired
image. Picture descriptions instantiate and combine

CITYNAME templates. A template is a type of procedure that pro-
duces a simple graphic image. Templates may accept

AVEPIRECIP arguments that determine their appearance.
The Pv system user employs the visualization

AVETEMP description/template editor for two tasks:

1. Creating special purpose templates.
Figure 4.9 Picture Description Code-Line 8 2. Enhancing visualization descriptions by

including templates in them.

These two tasks are performed through graphical

I TYAME interactions with the editor.
* TNM Templates tell the visualizer two things. First, they

I I IAVEPREO specify the appearance of a program subject during
, , LOEEMP A.. E.J IEvarious stages in program execution. Second, they

AVETEMP specify those variables or control structures in the pro-
gram being visualized, upon which the template is
based (binding information).

To make it easy for a user to create templates, the
Figure 4.10 Picture Description Code-Line 9 template editor provides an extensive set of painting

commands for drawing templates. A set of commands
is provided for binding the template that is drawn to
variables in the program being visualized.

In addition, templates that the user creates can be
CITYNAME catalogued for later retrieval and used as building

blocks in the creation of new templates. This feature
AVEPIAECF 1 allows the user to create a set of templates for com-

- if Pmonly used data structures. These can then act as
AVETEMP template standards for the design of future templates.

It is important that the editor makes it easy to
FOWTEMP create simple templates and provides the capability to

make any arbitrary template, no matter how complex.
The catalogue of building block templates w*ll provide

Figure 4.11 Picture Description Code -Line 10 a good foundation for making new templLes easily.
To further automate this activity, the ee*'.r uses its
knowledge of how the building blocks bind to program
variables to help automate the process of binding tem-
plates to programs.

L. MI 7--

Design For a Program Visualization System 19

For example, if a user wants to create a histogram
chart, the editor will present the user with a set of vari-

CITYNAME ous blank histogram layouts, from which the user will
choose one. Then varying styles of elements to be

AVEPRECIP placed on the chart will be presented. The user can
arrange these as he pleases to design the template.

AVETEMP Once the user has completed the graphical design of
- Ithe template, he enters the binding mode. The editor

LOWTEMP uses its knowledge of the selected histogram ele-
ments to prompt the user for the variables each ele-
ment is to be bound to. The editor highlights theFigure 4.12 Picture Description Code-Line 11aprratelmnatacse.appropriate element at each step.

4.3.1 Animation

M o Most of the templates the user will want to designHIGH P CITYNAME will have some degree of animation associated with

them. Two different types of animation are provided.The first type is the animation of a program variable

AVETEMP going through some specified range. The animation is
based on the value of the program variable. In this

LOWTEMP type of animation, it is necessary for the template
designer to provide information about the range of
acceptable values through which the template ele-

Figure 4.13 Picture Description Code-Line 12 ments are to be viewed. Exception conditions also
can be created with their own views. A typical exam-
ple of this type of animation is the histogram chart. In
this type of template, the size of each element is
based upon the representative value of the program

CITYNAME variable bound to it.
The second type of animation is not based on the

AVEPRECIP range of a program variable, but on program states of
activity. Animation is based on predicates associated

AVETEMP with each template. The predicates are in terms of
program states, program events, and data values.

LOWTEMP To provide an easy way to create and edit template
animation, an animation creation and viewing facility isHIGHTEMP designed into the editor. This facility lets a user mani-

pulate the template elements to create animation. For
example, the user can first create a background upon

Figure 4.14 Picture Description Code -Line 13 which the template activity will take place. The tem-
plate elements can then be moved independently
upon the background. Each change in the position of
one or more of the template elements may be keyed

CITYNAME to a program state.

AVEPRECI 4.32 Specifying Graphical Layout
-E The visualization Oescriptionltemplate editor lets the

AVETEMPuser specify the initial graphical layout used by the
visualizer. The user may also specify how the levels of

LOWTEMP detail are to be presented. In this way, the user con-
Hil trols the program visualization specification issues of
IGH composition and context discussed in Section 2.11.

Figure 4.15 Picture Description Code-Line 14

________-__-_

~ i

20 IMPLEMENTATION APPROACH

The template editor also provides a mechanism for
rearranging its own command menu layout. This

Rfeature lets the user substitute pictures or icons for
WEATHEROATA I CITYIAME commands usually represented by text.

AVEPRECIP 4.3.3 Template Code

AVIETEMP Interactive graphical specification of animation as
discussed in Section 43.1 cannot fully exploit the visu-

LOWTEMP alization potential of a PV system. For example, sup-
pose a user wants to create a visualization of an algo-

HIGHTEMP rithm for converting a bit map representation of an
image into a run-length encoded representation of the
image. The algorithm to compress images into a run-

Figure 4.16 Picture Description Code-Line 15 length encoded form generates only two major vari-
ables. It is the relationship between these variables
over time that is meaningful. All animation capabilities
discussed so far, however, are based directly on the
simple magnitude of program variables, program

WEATHERDATA states, and program events. To visualize an algorithm
in which complex relationships of program variables.

-CITVNAME states, and events are of principal interest, the user

AVEPRECIP must be able to write explicit procedures that translate
input variables into visualization directives. Template

AVETEMP code provides that facility.
The user should not be required to learn a new

LOWITEMP language to write procedures in template code.
Hence. the language used will be an extension of the

HtGHTEMP language upon which Pv is based. The extensions will
be designed to provide an easy method of interfacing
with both the graphics of the template and the pro-

Figure 4.17 Picture Description Code-Line 16 gram being visualized. One extension will allow the
user's template code to reference variables in the pro-
gram under study, through an et9rral variable cc,:
struct. Other extensions will pruvide a convenient

~E R D A T A method for controlling aniw' ,i.

WEATHERDATA

CIT YNAME

AVEPRECFP

AVETEMP

LOWTEMP

iuGHTEMP

i Figure 4.18 Picture Description Code- Line 17

APPENDIX A

EXAMPLE PROGRAM VISUALIZATIONS

Pirogram ViSualization Project

Graphic designers have an important role
in the Program Visualization Project.
They bring approaches and visualizations
to the project that programmers and
engineers do not. Part of the desiqner's
task is to put him/her self in the
context of a user or client; this
facility makes the designer more
sensitive to the needs and sensibi]itiAes
of the end user. Designers also have
experience in handling systems with minny
parameters relating to human functions;
coordinating and making sense out of
these various parameters are skills that
designers can contribute to the project.

This experience gives the designer
effective tools for the use of rich
visual heirarchies, which contribute
enhanced semantic depth to the
visualizations without adding confusion.

This section of the proposal is an
attempt to show a few of the avenues
that can be explored in the quest for
worthwhile program visualizations. This
set of directions is by no means
exhaustive or complete; it is only a
sampler of possibilities. Our concern at
this point is not so much with the
actual means of implementing these
methods and techniques with particular
hardware and software, but rather a
specification of needs. Others have
explored, classified and rated somr of
the existing program visua]ation
techniques. A bibliography of sone of
these publications is included.

We have used existing C code for
concrete examples of these possible
techniques.

p

I

[Program Visualization Project

Overall approach: and other information (filenames,
A multiscreen workstation with various history, main memory requirements, CPU
input devices: keyboard, joystick, knohs seconds used, etc.). Color could be used
and dials, a digitizing pad. Six or nine to link the same names from screen to
screens allow for multiple displays and screen. A similar approach has been
relationships between displays. For explored at Xerox Palo Alto Research
example, the middle screen could show Center. The Smalltalk system of multiple
the current program module (function, overlapping windows based on the idea of
subroutine, etc.) being worked on, the sheets of paper on a desktop has been
screen to the left the module that calls described by Teitelman (T11. This
it and the screen to the right the technique of multi-windows on one screen
modules it calls. The top row of screens has its advantages but could perhaps use
could show variable maps for each module an overall organization to prevent the
(working, calling or called) while the "desk" from getting too cluttered.
bottom row shows status, command menus

amo -M=UZ - -

Program Visualization Project

As the prog rariner needed to sh ift
his/her attention up or down the working
module, a reverse video bar could
highlight the current line of code.
kother possibility for the use of the
reverse bar could be showing the line
currently being executed as the
programmer watches the program in the
process of execution. The joystick could
control the speed of execution so the
user could step through the program as
fast or slow as wanted.

CAr at ms, char *fnwm, wr *fnam,

stnict point strtuct point struct point
"ablet (, ftableto(, "tmet()

Inc I; int i ; Int i ,
Struct node struct node struct node

*tap, *0rp. *tp,
'qrabo; *grabo; *grab()

char *M4 l3oc 0 char *maa11co;

If fp 1% 1 if (fp I- a I)

Clow(ep) close(fp ; cloe(fp
fp- O n(frnme, 2 1 fp open(fnam,2) fp-oen(f n,2) ;
if fp< 2) if < p2) (if (fp< 2) {

printf(-file $a doesnt sem printff -file IS doesn't Sm printf('file %a doesn't sm
to exist\n, rms) to exist\n', fname) t o exlit\n', fna);

do enu do mnu; d inu

2 3

Program Visualization Project

If the prog rammer wants to sh ift to
another module the screen would scroll
or the modules could shift screens
left-to-right or right-to-left. If the
programmner got to the top level of code
the information appearing next on the
left screen would be a functional
specification for that code; if at the
bottom level, the next thing appearing
on the right would be assembly or
machine code. Continuing to the right,
circuit paths would appear, executing
the machine code.

m~ain() tf'unat4-0
read(fp. tram__count, 2) char 6fnmfe, for(fram film:
printf(*frame co3unt: %d\n. *getWO rd 0, frame I- ML

frae cout) ; strsct point frame t ram -> ptr
film - * (frame count) tablettl, expend(true
if(count(film) ---frme count) tnt i;I closeC fp)

printf("shortchanged Th- loadin, atruat node show*(tr a
filmita I *tmp, do__menu I

frae countr count(film) : grabO;
for(fraae- file ; chat ftolloc();

fae- frae -> ptr)printf("filnmsz

frae. -id - ealloc(TTMZSIZI tnea -= W
if (fP I-flI

closea(fp)

I road(fp. frame__coun~t, 2)char l

These quqstions for typ)e.- of printf(ftram 1omt:ld\n, *90point
I nformation to display are just one tram count struc pitabe

F poss1-ibility. hoever. The rest of th film frame fn.counit atn
report will discuss various etthods struc rode fl l rescs
reprepentin9 egtrol flow an4 data I printf(shortchangqed In loadin tutod
Structure an*4'lues. thes two are a filmI~w) beP.
will be treated separately, with th fram. counit -count(film) char *loO
intention that two or more of these fort fr1W- f ilmealoo
methods could he toqed ximuitmweossly frm I- hWlL
the multisrreen display. Ibsen mtho frame -frame- ptr)ptintf(OfIlen: I a
use. output capabil ities that hae no tramin d - eulloet TTE__ST fn i getwrdl 0

ilos C fp) I

funOhi ntoryai

Chat? 4: ' *fM#a- ;: J~LY (worin c lopiorcle)w

int I I shawl frame s aued. etc.). W oul d
struct nos do, tolinke, asm, a -hw fromto

etwr -ORU sreen. A similar approach hbeebeAqvibl) I aplored at 3leron Palo Alto eschar Amllocl);Center. The 9aIlallt "'w m O0 intf(Ifilansato o werlappiqg wi 11 besed onthpr , sem of paper an a desktop hasfu" ~ 0 1 described by fetlmmi tT!. Me,tedvsiqa of msati-wi di on ane
apsn fnss. 2 1 anoverall organiation to rwu,

Program Visualization Project

These suggestions for types of
information to display are just one
possibility, however. The rest of this
.report will discuss various methods of
,representing control flow and data
structure and values. These two areas
will be treated separately, with the
intention that two or more of these
Smethods could be used simultaneously in
the multiscreen display. These methods
use output capabilities that have not
been well used (or used at all) up to
this time. These capabilities include:

multicolors and grey levels
reverse video and blinking
size changes in typeface
bold and italic typefaces
different type fonts

For this report we have limited the F
range of these tools for perceptual as
well as technical reasons. We will not .""
necessarily use all of the possible
variations of one tool, but show this
list as a menu of clear and available
variations.

3 colors plus black and white 7 on.ie oa
6 grey levels including black 8 point Time% Roman

and white 9 point Time% Roman
reverse video with blinking 10 point Times Roman
3 sizes of type II point Times Roman
type styles: bold roman u/lc 12 point Times Roman

medium roman u/lc 14 point Times Roman
medium italic u/lc

a single typeface Times Roman
A study has shown that the range of Times Roman Italic
color for letters is limited, but this T
can be expanded by using color bars with Times Roman Bold
black or white letters on the bars. Times Roman Bold Italic

* Melior
Memphis
Optima
Palatino
Univers 55

- 5... . .----- •- ii I in

Program Visualization Project

Visualizing C code, possibility 1 4. single spaces (1 character)
between all wrds and symbols

Prettyprinting standards:
5. open and close brackets in sAme

1. 4 character indents place each time, let the indent
show the structure

2. no more (and possibly less)
than one statement per line 6. left justify variable names in

declarations and definitions
3. "if", "for" and "while"

conditions on their own lines,
with "if", "for", "while" and
"else" blocks on their oAm
lines

int fp = 0
u use() I

char *fname,
*getword (,

struct point
S*tablet(),

int i;

struct node
*tmp,
*grab(;

char *malloco;

printf("filename:") ;
fname = getword() ;
if (fp != 0

close(fp) ;
fp open(fname, 2) ;
if (fp<2)

printf("file %s doesn't seem
to exist\n", fname) ;

do menu ;
return ; I

read(fp, frame count, 2)
printf("frame &unt:%d\n",

frame count) ;
film = gra(frame count
if(count(film) -f= frame count)

printf("shortchanged in loading
filmln"

frame count = count(film) ; }
for(fraW = film

frame I= NULL ;
frame = frame -> ptr

4' frame -> id = malloc(TILE__SIZE) ;
for(frame = film ;

frame 1= NULL
frame = frame -> ptr)

expand(frame) ;
close(fp)
show(frame) ;
do menu I

Program Visualization Project

These prettyprinting standards could be structure. Code is in roman with bold
used in a larger context. The major task keywords (if, else, while, for, int,
of this context would be to separate and char, etc.). The comments could be
relate comments and code by putting each structured in different sizes to show
in its own column, 40 characters wide. levels of various types:
The main title of the program could be
in a larger size of type while each historical
module (function) title is in a full authority
screen-width reverse video bar, shown by formality
the grey bar in the figure. Code and anecdotal
comments are linked by rules across the
screen and have the same indentation

in fp=0;

could s variable maps for each module dw *4n44

(worin., calling or called) whil. the *getword
bottom row shows status. comma menu- ft.tUf point
and other informtion (filenles,
history, main memory reqitreents, c *tablet()
Aerods used, etc.). rolor could be used m i ;
to link the same names from screen to

W screen. A similar aproach has been struft node
*trp,
*grab(;

char *malloco;

printf("filename:") u
fname = getword()
i£ (fp = 0

close(fp)
fp= open(fname, 2);
if (fp < 2) (

printf("file %s doesn't seem
to exist\nm , fname)

do menu ;
read ; fp, frame cout, 2)

printf("frame n~~k'
frame count);

allocate linke list for film film = g a-frame count)
explored at Xerox Palo Alto Research It(count(film) T-- frame cot
Center. sy smlltmlk "stem of multiple printf("shortchanged rnI loading
overlsving windows hbsed on the idea of

Shees o pner n adesktop has beend~erl~d y TItelan Til. This
allcateln i f f a frame count = count(film)
allocate memory for ri]m for(E --=TFlmi-

frame I- NUL
frame = frame -> ptr

frame -> id - malloc(TILE SIZE);
load film for(frame flm
techniique of multi-windo, on one screen frame I- NULL ;
ha Its advantaq e but could psrh"ps use

, t- 4 -- -

Program Visualization Project

Another variation on possibility 1 uses
color bars to indicate type of comand,
for example:

etc.

Still another possibility could be to
use color to differentiate between
declarations and definitions, which look
similar at first glance.

* fp 0;
1oadJ iis"1hedisk- f a. ir* M~rXu __sie(

iii- *fnime,

his/her attention up or down the workiug
module, a reverse video bAr could *getword ,
hiqhlight the current line of code.
Another possibility for the us of the p

roes.bar could bk shwn th n tablet(),
rurrently beinq executed as the
prenrammer wtches the proqram In the
process of execution. 7he Joystick could node*imp,

*grab(;
• ral loc: 0

("filename:")
fnane = () ;
U (fp Is 0J

close(fp) ;
fp = open(fname, 2
* (fp < 2) (

("file %s doesn't seem
to exist\n", fname) ;

_fp, frame count, 2) ;
"frame unt:Sdn,

frame count) ;
allocate lined 'ltst for fi'lm ' n = grUm(Frame count ;
programme. qot to the top level of code *(cot film) T-frame count)
the Information aWarln next on the loadi
left screen. would he.* fit onai " "hrcagdi
-MY.- fICAtlon for thet cadej If 0t the filml\nn"
bot, tm few]. u, next thing aeriq frame count - count(film) ;)
ailocate memorv 'for rUlm frame aflm

frame I NULL;
frame- frame-> ptr

frame -> id a walloc(TILE SIZE);
loIi' i frame ilm ;
on the riq t would b aobly or fra is NULL
inrhine code. olnnui to th rir.t,IL ,, _I.t

Program Visualization Project

Visualizing C code, possibility 2 1) Use a heavier rule weight to show
Modified Nassi-Schneidermann diagrams control structures; a 3-sided box for

loops and a Y-shape for decisions. "flier
N-S diagrams in their present form do loop signal could enclose all :omm ylns
not take advantage of the richness that are a part of the loop. In the case
possible in graphic symbols and signs. of the "for" loop, there is an
Sowe enhancements have been suggested in initialization which only happens once,
an article by Frei [F2]. One possible that is, not in the loop; but
avenue for exploration could involve conceptually and code-wise is an
keeping the basic form of a box made up integral part of the loop. The shape of
of smaller boxes for individual the top part of the decision symbol
commands, but with the following could always stay the same, regardless
changes: of the shape of the box, so that it ma'y

be clearly and quickly recognized.

- ;Define. describe and delineate smewint fp -0 methods and techniques for visualizing~

U__U000 fteiter ptewd. ON in"i:t ths. point Isas so iMW Wm t d Sat

char *fae, meaf Implementing these methods andtochniqutg with particular hardkere and*gettwrd (), softwmre. but rather a specification of

struct point
*tablet(),

int i ;
struct node

*t rlp,
*grabo;

char *malloco;

U printf(filename:"

* fname - getword() ;
if (-p 1. 0)

close (fp) ; a nu mber of

fp =open(fname, 2);

if fp<
* printf("file %s doesn't seem

to exist\n", fname

*do menu;

D-[efine, describe aid delineatesa ne

* * read(fp, frame count, 2) ; techiues fo viua.i

printf(Oframe count:dn",r

Program Visualization Project

2) one problem with N-S diagrams is the The boxes that contain commara]s and
space limitation, especially for comirents could an identifying symbol or
comments. This could be easily taken color. For example:
care of by considering each comment input/output
space as a window with a scroll control keywords
underneath. Other methods could be declaration keywords
variations on the Smalltalk overlapping
windows or the SMS page-turning A grid could be established to determno
analogue [B2]. Some possible position and size of type and symbols.
levels of meaning in the comments have
been enumerated in the section on Note: It might be possible to build a
possiblity 1. compiler that compiled Modified N-S

diagrams into machine code, reading the
diagram along with the verbal part of
the code.

film - grab(frame count)a;ocate lnked list for film

e if(count(film) Isr frame__count){"

printf("shortchanged in loading
S film!\n" ;

frame_count = count(film) ; }

for(trame a tilm ; allocata mrv tor tiln

frame in NULL ;

frame ->id = malloc(TILE SIZE)

frame = frame -> ptr

*for(frame film ; film

frame " NULL

expand f frame)apue r prqs.or coner at , ,this

tframe =frame ->ptr)

: close(fp)

e show(frame)

:e do menu

r eturn ;

4,

I.

Program Visualization Project

Visualizing C code, possibility 3
Modified Flow Charts

Flow charts, like N-S diagrams, do not
take advantage of possible visual
richness and variety. If the visual
vocabulary is expanded to include
different line weights and types,
colors, symbols and even three

- dimensions, flow charts could contain
more information with more relationships
between pieces of information. A few
sug~gest ions of an expanded usual
vocabulary are listed here. Animation is
a powerful tool; for example, the speed
of an event can sometimes be more
informative than its shape or color.

SYMBOL SETS WITH +
CHANGING FEATURES (

* ~ ~ te I I" '* Yelo Orane,(d

COLOR Iw ., .. Wd pC"'

0 0 0 Ib

* , SIZE

GRAY SCALE

WIDTH ~II

UROK EN/SOLID -

EMPTYIFILLED

NUMEROSITY

Program Visualization Project

The SRMS concept (B21 of zoominq in on
an object to get a closer look cit
details could be applied to flowcha rts.
A user could get an overall view of a
program, then use a joystick to zoom in
on a particular node or cluster of nodes
and have details appear, keeping no more
than a certain amount of complexity on
the screen at any one time. Automatic
graphic adjustment could be made to
convert symbolism from one conceptual
level to another as the user zooms in
and out.

2& -

V1 A

Program Visualization Project

One way of incorporating some of these node's "gravity" and orientation would
elements into modified flowcharts is by determine spacing and placement of the
using three instead of two dimensiops, related information. Global information
creating a flow construction. Code in could be farther away from the node than
some form would be on one face, comments local information. The arrows connecting
on another, module history on another nodes contain information passed to
and other information on yet another t hem. The user could literally "get a
(size, run-time, etc.). Background color new view" of his/her program that had

of the node would indicate function, never been seen before. This could help
level of nesting or grouping. The in determining new relationships and
programmer could turn the nodes and move connections between parts of the

through the three-dimensional flow program.
construction. The construction could be
enhanced by positioning related pieces
of information around the node. The

'to- ,.

printf(*filenmm:)

I f ' I I
close (fi)

fp- ope(fnam, 2)
i f fp < 2) (

printf("M11 Um doesn't

to exst'nj, frnamm
do inh;
reit-urn I

_~- ~-

I.

Program Visualization Project

Visualizing C code, possibility 4 animation. The methods of showing
Data representation, variable maps and complex data representations, arrays of
constructions structures for instance, should c]early

show that one piece of information is a
Programmers often need to see part of another. Information about a
relationships between values of variable that could be a part of the
variables. A variable map coupled with a display includes:
program display provides a complete name
picture of the relationship of the type
process of the program with the value
structure and content of the data. The space occupied
standard method of showing data is with address
boxes labelled with a variable name.
This can be enhanced with lineweights
and styles, colors, grey values and

free I st[] free stO

f reel i st

free llst[21

free list f2 -

f ree lst C99

9m-*

0

Program Visualization Project

Each variable box could be considered as speedometer or gauge. It might he
a window, with more information about valuable, however, to include a
the variable available by scrolling, graphical display of the change in the
Care should be taken to assure that the variable's value to compare expected
data representation (variable names an results with actual results. Fitter fF11
diagrams) be as clear as the data mention redundancy as a tool, that is,
structure (the more abstract and general showing the same information in
description), different forms simultaneously. Showing

variable values alphanumerically and
Watching the values of variables change graphically is one application of this
as a program runs is a valuable key to technique.
understanding the function and structure
of the program, as well as providing a
powerful debugging tool. The variable
map could be animated, like a digital

blow-u r

Va ri ribl e IL

213.

expected

actual

variable 2 -'
"

In
I

exrected

a at,: Al

- -..6- -

Program Visual izat ion Project

The final portion of this section
consists of some images that have
bearing on this problem of proqram
visualization. These images come from
many sources; we include them with notes
on their appropriate features.

Program Visualization Project

1 ical data flow diagram

Md fsift
oft I

Use
Field
Ty" I

wow
Miss G.'ed

fillift
Edit 91 tvpe I
Field 9w

Uit 4111 Typs, 2
ir1rdmion Ch"k Callft 0 Exists"

Oft"i Field ids Fold R4.tgd

sic

I"g 4 Ed.,
Fold edm4 Calka
Ty" 3 rmb

Lail -Shd 106sim
FmO 44"ed falft %,wwwmoa
live mod

bo NUKIII %owdmomm

"Wor Musier m motes
low," losses.

Uposile
Wassin,

witis

OPIUM

Program Visualization Project

Typical HIPO hierarchy chart

RECRD TRNSCT RCOD ECRD ONMASTER'

FFELD

WLEDIT OET

FIELD !FIELD

EXTRACT 'GET
FIELD :SFOUENCED

CARD

Program~ visual izat ion Project

Typical structure chart

FIL

wi s4 __ETII __VAUD_

Proqram Visualization Project

Scan line, seen usually as a variety of
grey values, shown as a monoline graph

V ~

horizonta

Ir=

so 100dn (m am)

I

br

I.

It

Program Visualization Project

Graph with time as one axis and space as
the other, with windows on events. This
is an attempt to image a very large
system; the universe KI].

-16

r . lcl~e 'l .,14ncnn fw L S bfm

on" I IMPUM

,SI I

a - I-tlmt.

• ",, ,r-, L 3=,dad" ovum

-II

-aiam

ED 2 I II[d36s

AOL

.gQ .2 bi -

Mphm*

.9."

.13

- Proposed viewpoints (windows) for observing a numrber of objects and
phenomena. Field of view is 2 X 1O"metres wide for indicated n; time is
speeded up by a factor of 10t for indicated t.

Programi Visualization Project

Nodes and clusters of nodes, information
grouping. Exam~ple of color being used to
organize a complex network.

ccs 155o pro-n n

11.

Program Visualization Project

Information network abstracted and

simplified for clarity

-ii F.l. cld

-I t-I Se

AO' *dtWW Tj CWMWW Ch..cg..U

bant...qswd W e CWAV L".'e

f" S- " d

,,.,.,,l

J

M " so
0 W • "

"W o po %t+

S mu-

MSW4

Sa0*

eve"
*Amp

No-lo

vows,

so m" U .0.S

SWO. oe

Design For a Program Visualization System B-1

B. PROGRAM DESCRIPTION TECHNIQUES

Graphical representations for design and
implementation have been known to be of
great value in engineering and many other
fields. But many fields have an advantage IProcess
over programming in that they have what
could be called a "natural" graphical
representation. By "natural" it is meant
that the items of interest already have a
two-dimensional layout. For example, the
formalism of schematic diagrams for ecision
electrical circuits just maintains the topol- E
ogy of electrical circuit connections
without creating something new. Program-ming languages lack a "natural" graphical

representation (FREI, WELLER and WILLI-
AMS). Figure B.I Flowchart Symbols

Many techniques have been devised for graphically
describing the structure of programs. They range in devices. Flow of control is indicated by lines connect-
power of expression from the conventional flowchart to ing the flowchart symbols. Arrowheads indicate the
powerful graphical programming systems. They have direction of the flow.
varying degrees of appropriateness for today's pro- As can be seen in Figure 8.1, flowcharts lack sym-
gramming style. bols for explicitly representing loops, "blocks" of code

This appendix is a brief survey of some of the better as found in structured programming languages, and
known techniques for graphical program description, other high-level concepts. These must be assembled

17 The salient features of each method are compared in from the primitives found in the flowchart repertoire.
an attempt to derive a minimal set of useful con-
structs. The description techniques surveyed are: B.1.1 Analysis

* Flowcharts Flowcharts are used to represent the flow of controlin a program, a purpose for which they are adequately
* Nassi-Shneiderman Diagrams suited. Flowcharts were developed in the days of

* HIPO charts machine language programming. As a result, many of
the constructs found in flowcharts are uniquely suited

* GREENPRINTS to machine and assembly language programs, but are

* PYGMALION inadequate for programming in "high-order languages."
Thus, it is not always easy to express some program-

9 Mini-LOGO animation system ming language constructs using the basic flowchart

* Micro-PL/1 animation system symbols. For example, there are no symbols to
represent looping or case statements. These must be

e SP/k visualization system constructed from collections of the basic symbols.

e Sorting animation system Because of their nature, flowcharts cannot enforce
modular design in protidms. No restrictions are

* CDEBUG graphical program debugger placed on transfer of control. This can lead to
flowcharts that are nearly illegible due to a dense

BIt Flowcharts forest of control lines.. FFlowcharts of even relatively simple programs can
One of the earliest attempts at representing pro- grow to unmanageable sizes. Since mop-' onstructs

grams graphically is the flowchart. Flowcharts consist in high-level languages require several syr'bols for
of a collection of simple and easy-to-understand sym- their expression, flowcharts quickly become crowded.

* bols that represent primitive operations found in all Off-page connectors allow the flowchart to be
, :programming languages. Figure .1 shows the basic expanded to other sheets of paper, but result in a

symbols of a flowchart. Not shown are symbols diagram that is difficult to comprehend in its entirety.
representing various storage media and inputloutput Clever programmers have grown adept at filling every

:4 _ __ _ _

B-2 PROGRAM DESCRIPTION TECHNIQUES

available square inch of a flowchart sheet in an
attempt to avoid resorting to multiple sheets. These
attempts, while economical of space, are very difficult
to understand

Flowcharts satisfied a need that existed before the
advent of high-level languages. Programs often were
written with convoluted control flows to economize on
precious resources. They are of interest from a histori-
cal perspective, but are lacking in the qualities neces-
sary to express the "modern" style of structured pro-
gramming.

B2 Nassi-Shneideiman Diagrams

Nassi-Shneiderman diagrams (NSD) are an attempt
to model computations using a control structure amen-
able to implementation in structured languages [NASSI
and SHNEIDERMAN]. They feature simply ordered Figure 8.2 Process Symbol
structures, each representing a complete thought. NSD
prevent unrestricted transfers of control, a hallmark of
structured programming.

There are four basic symbols that can be combined
to form structures. Structures are labeled and are rec- Boolean
tangular in shape. The basic symbols provide a basis
for representing most operations, but the repertoire F T
can be extended to improve the readability of
diagrams that use the more advanced constructs
found in many programming languages.

ELSE THEN
1. The process symbol (Figure B2) - a Clause Clause

rectangle-is used to represent assignment
and input/output statements as well as pro-
cedure calls and returns.

2. The decision symbol (Figure 03) represents
the IF-THEN-ELSE construct found in most
structured programming languages. The cen- Figure 8.3 Decision Symbol
tral triangle contains a Boolean expression.
The left-hand and right-hand triangles contain
T or F to represent the possible outcomes of
evaluating the Boolean. The process symbols
contain the sequence of operations to be per-
formed depending on the value of the DO Clause
Boolean.

3. The iteration symbol (Figure BA) represents
looping statements, such as FOR and WHILE.
The body of the iteration is a structure. The
form of the iteration clearly shows the scope Body
of the iteration. Iterations may be nested to
any level.

4. The BEGIN-END symbol (Figure B) represents
a block of code in the programming language.
The scope of local definitions can be clearly
seen with this construct. The body of the
BEGIN-END is a structure. Figure 8.4 Iteration Symbol

-_-_ _- - - - - -- - . . ------ _ _ _ _ _ _ _

Design For a Program Visualization System B-3

The structure of Nassi-Shneiderman diagrams
instantly reveals the structure of the code they
represent. Blocks are clearly delimited. The range of

BEGIN loops can be seen clearly. "Parallel" blocks of code
(as in the different branches of a conditional) can be
discerned easily.

8.2.2 Programming Support System
Body Researchers at the IBM Research Division mn San

Jose have developed a system that interactively helps
the programmer construct and execute NSD. Their
goal is to build a programming system that will
increase the quality of all phases of software produc-

END tion by:

1. Establishing charting techniques to specify
Figure B.5 BEGIN-END Symbol programs in a way that clearly shows their

structure and logic.

2. Using an interactive graphics system to draw
and edit these charts.

B.2.1 Analysis
3. Providing a preprocessor/compiler mechanism

NSD are created from a flowchart language that has to translate charts into executable code.
a control structure similar to that found in languages
used for structured programming. Its creators claim 4. Providing self-documentation as a by-product
the following advantages over conventional flowcharts: of the program development process.

5. Providing better, interactive diagnostics and
1. The scope of iteration is well-defined and visi- program development aids than is currently

ble. the case.

2. The scope of IF-THEN-ELSE clauses is well- [FREI, WELLER and WILLIAMS]
defined and visible; moreover, the conditions They have added data definition constructs to theon process boxes embedded within corn- Thyhvadedtaefniocnsrtsote
pound conditionals can be seen easily from symbol repertoire of the NSD as well as the ability to
the diagramt embed PLI1 statements in the symbols. Their Pro-

gramming Support System (PSS) consists of these
3. The scope of local and global variables is extensions to NSD and the following tools:

immediately obvious.

4. Arbitrary transfers of control are impossible. 1. NSD editor

5. Complete thought structures can and should 2. NSD interpreter

fit on no more that one page (i.e., no off-page 3. NSD preprocessor/compiler
connectors). 4. Question-answering component

6. Recursion has a trivial representation.
[NASSI and SHNEIDERMANJ 5. Utility routines

The use of NSD enforces the use of structured pro- The user of PSS utilizes the NSD editc. to create NSO
gramming techniques. The absence of a way to that contain data definitions and embedded PL/1
represent GOTOs effectively precludes their use. Pro- statements. Each NSO defines an executable module
grammers accustomed to structured programming find that may call other NSD and support routines. An NSD
no difficulty with its absence. Programmers accus- typically is no more than one display screenful in size.
tomed to using GOTOs easily adapt to their absence; The NSD editor allows the user to point to any por-
the graphical representation of the program aids in the tion of an NSD and insert or delete symbols. When a

. process of adaptation, new NSD is created, it is empty; the user fills in the

As there are no off-page connectors, the program- structure with symbols from the NSD repertoire. PL/1
mer is forced to modularize the code. Large sections code, such as assignment statements and Boolean
of code cannot be legibly inscribed in the structure expressions, are embedded in the symbols. The
described on a single sheet of paper. This forces pro- system automatically adjusts the display when new
grammers to write small, logically coherent modules. symbols are inserted or deleted.

B-4 PROGRAM DESCRIPTION TECHNIQUES

Once an NSD has been created, it may be compiled
into machine-executable form or interpreted. Partially
created NSD may be interpreted; when a portion of the
NSD is encountered that has not been specified, the
user may complete the specification. When an NSD is
being interpreted, execution may be in a single-step
r 'de. The user may also set breakpoints and exam-
.. and change variables. In this mode, the PSS acts
as a powerful graphical debugger. Initial response to 4.
the Programming Support System has been favorable.
The authors of PSS have found that specifying a pro-
gram as a two-dimensional structure exhibits the
meaning of a program more clearly and results in
better coding, improved programming productivity and
higher quality documentation thus reducing the time
and effort (cost) for production and maintenance of
software [FREI, WELLER and WILLIAMS].

The PSS system is not being actively developed at
this time. However, it has been integrated into another
system-TELL-for the design of hardwarelsoftware
systems. In that system, NSD are being used to 4.0 Input Process Output
develop algorithms as a part of software design.

B.3 HIPO Charts - .
The HIPO (Hierarchy plus Input-Process-Output) l L iWJ

technique ([STAY], [HIPOI) is a top-down design metho- 1.
dology for software systems. During the design phase 2.
of a software project, HIPO charts are used to succes- 3. - - -A- - -
sively refine the design until the basic components
and their fun ions are elucidated.

The HIPO technique consists of two basic com-
ponents (shown in Figure B.6). They are:

1. Hierarchy chart: shows how each function is These steps are repeated until every function is fully
divided into subfunctions. defined. The bottom-most boxes in the hierarchy will

2. Input-Process-Output charts: express each probably contain structured English (pseudo-code)
function in the hierarchy in terms of its input statements that describe their function.
and output.

8.3.1 Analysis
When developing the HIPO charts for a software pro- A set of HIPO charts created in the mannerject, it is essential that the hierarchy and input- described above will contain a complete description of
process-output charts be developed concurrently. This the components and their interfaces that will consti-
creates a functional breakdown of the design. the ompo en deinerfAppliation on-

The process of creating HIPO charts for a software tute the system being designed. Application of func-
project consists of two simple steps that are iterated tional design techniques [STAY] will further result in a
until the design is completely specified. Those steps logical grouping of components into modules andare: processes.

HIPO charts serve a dual purpose. They aid in creat-
I . Describe the function as a series of steps, in ing a rational and fully specified design for a software

terms of their inputs and outputs. system that can be used by the implementors of the
system. They also serve as final programming docu-

2. Move to the next level of the hierarchy. If the mentation for use by the maintainers when the project
steps in the input-process-output chart are not is complete.
fully defined, create a new level in the hierar- HIPO charts provide a modular description of a
chy in which each Wi Th a box. software system. Functions are decomposed into sub-

functions until basic primitives are defined. The inter-
faces to these functions are fully defined. HIPO charts

Design For a Program Visualization System B-5

can be thought of as maps of a software system; each
level of the hierarchy provides a more detailed view of BLOCKS WITHOUT GATES
a part of the system.

HIPO charts do not descend to the level of code. Decision (D) Loop (L)
Instead, they specify the function of the code and its
interface to the outside world. From the program visu-
alization viewpoint, they are useful as guidelines to the
maintainer (debugger) for where to look in the code to
find a particular function. 1441

B.4 GREENPRINTS

GREENPRINTs [BELADY, CAVANAGH and EVANGELISTI] a **
are intended to be to a programmer what blueprints
are to an engineer. The GREENPRINT can convey to the
programmer the text of a program as well as its con- **a
trol flow. The name GREENPRINT derives from initial .. a...

implementations on CRTS with green phosphor. . a a*

GREENPRINTS consist of two types of objects: theblock and the box. Programs are represented by *a

means of objects connected and arranged over a a*a

two-dimensional virtual grid. a...... *a
There are two types of blocks in GREENPRINTS: deci- -+ -----

sion and loop blocks (see Figure B.7). 4 Decision blocks
represent IF-THEN-ELSE and CASE statements. Loop
blocks represent DO, FOR, and WHILE statements. Processor (P) Gate (G)

There are two types of boxes in GREENPRINTS: gate
and processor boxes (see Figure B.7). Gate boxes are a

always embedded in either a decision block or a loop - --------
block. Processor boxes stand alone. a a-

The GREENPRINT representation of a program is a , a a a a

tree where blocks and processor boxes are nodes with ------- ------ - ------ +

entry at the top and exit on the bottom or on the right.
Gate boxes originate subtrees in the next column to Figure 0.7 GREENPRINT Example

the right (see Figure B.).
A processor box can be thought of as containing a

collection of code that is executed sequentially. A
gate box contains a predicate that can control a deci- B.4.1 Analysis
sion block or a loop block. Source code may be GREENPRINTS can be used in every phase of the
displayed to the right of each box in a GREENPRINT. development/maintenance process of software. An
GREENPRINTs are configured so that there is only one overview of the software system may be seen during
box in each row, and that box is the right-most object the design phase by suppressing detail. During
in that row. This spatial arrangement allows the right development, programming logic may be displayed.
contour of a GREENPRINT to mirror the left contour of Program text can then be added to complete the
the indented source code. Figure B.9 shows an exam- specification. The resulting GREENPRINTS may be used
pie of an annotated GREENPRINT. by those maintaining the system.

The decomposition of each block in a GREENPRINT GREENPRINTS were developed to serve two needs.
is found in the column immediately to the right of the The first is to create graphical representations of exist-
start of the block. Processor boxes are always in the ing programs for use by the programs' maintainers. A
right-most column of a row and, hence, are not program was written which parses the source code
obscured. Gate boxes, containing predicates, are and creates the corresponding GREENPRINT represen-
immediately apparent by the right angle extending tation.
from them. The second need served by GREENPRINTS is that of

a design tool. Program designers can start with
4 Note that all figures in this section are duplicated from schematic diagrams that indicate basic flow of control.

ISELADY, CAVANAGH and EVANGELISTI. As the design is refined, processor and gate boxes

B-6 PROGRAM DESCRIPTION TECHNIQUES

Loop Case If-then If-then Processor

else

*,. a . ..

a** a - +
I *a
a * a .. .
I* 4 a

* a a.. .

Zeta I . a. a...

Ieee I. a. + -... +

SI I.. ..

Iee ... a.. a

I*e. I a + -

lee. .. a.I..a

Ieea I.a. a--

..................................... (
Zeta I . a.I.. a

Zeta I,, * a I. a.I.a a

a I6a I.a..-.

reel r---I---.
Ieea I.a Ia.I aa.
Z eta I... a I... 1 * --

reel I.. I.

le, Ia.-

reelI

Design For a Program Visualization System B-7

. DO J-1 TO 100

I..: . ..
. - - AA(J)=I THEN

,• I F()-

l*I ELSEF ()> T E

I

I* - ------.. ..- --

z---

I**

I**! AB ELS

I~ I..... ,.C~

zoo,....'

lot' s . a -- . 4

Zoo*

Ia aa A a DO (IJT 1E

4 -*4 a......

i*- a......... a. a ...

. 4.. a,* a a 4- -4l

I**1 [* a I. . FJ*
4*a +......... a. a a

Z*.a+.........I+

I. 4 ' a.. . 0..... + -

14.. a........a Ia a a

B-8 PROGRAM DESCRIPTION TECHNIQUES

representing unspecified actions can be "filled in" with happens to remember what is done, then a program is
program text. The result is an executable program. constructed as a side effect. But the goal of the pro-

GREENPRINTS graphically show the nesting of a pro- grammer is to do a computation once. This is helpful
gram and the decomposition of blocks into subcom- for understanding in any case; a good way to under-
ponents. They represent an attempt to graphically por- stand a complicated algorithm in any language is to
tray the two-dimensional structure of structured pro- work through it with representative values. Instead of
grams in an intuitive way. using the medium of paper or blackboard, the -

GREENPRINTs are being used internally within many PYGMALION programmer uses the display screen
labs at the IBM Thomas J. Watson Research Center. [SMITH, p. 701.
Their use is spreading to other labs as people become
aware of their existence. The authors of GREENPRINT 8.5.1 Analysis
are exploring additional notations for representing con- The main innovations of the PYGMALION system are:
structs such as procedure calls and returns.

I.5 PYGMALION 1. A dynamic representation for programs-an
emphasis on doing rather than telling.

PYGMALION (SMITH] is a two-dimensional visual pro- 2. An iconic representation for parameters and
gramming system developed by David Canfield Smith data structures requiring fewer translations
at the Stanford Artificial Intelligence Laboratory. It from mental representations.
differs from the other techniques described thus far
because the user writes programs using only graphical 3. A "remembering" editor for icons.
constructs to represent operations and data. There is 4. Descriptions in terms of the concrete, which
no notion of embedded program text in graphical PYGMALION turns into the abstract.
representations of program control structwres.

The user shows the system how to perform a com- Of these innovations, perhaps the most significant is
putation by explicitly going through the steps. The the iconic representation of data and operations. By
machine may remember the sequence of steps that allowing the user to create representations that are
the user executes and reproduce them at a later time. meaningful to him and that require little effort to
In this respect, programming in PYGMALION is similar translate from mental representations, PYGMALION
to programming a hand-held calculator. relieves the user from the distracting process of map-

The PYGMALION user employs a computer graphics ping mental constructs into programming constructs.
display (raster or stroke), a pointing device, and a key- It is too often the case in programming that the forest
board. The display shows a menu of predefined sys- is lost for the trees. The programmer becomes so
tem functions and a large work area. The user mani- involved with the myriad details of implementation that
pulates icons that represent data and primitive opera- he loses sight of the original intent.
tions to create graphical depictions of the intended PYGMALION is by no means a system for producing
operation and its operands. The user is free to create production versions of programs. In fact, it would be
icons that are meaningful to him. Every operation the quite difficult to represent a large system in PYG-

! user performs has not only internal semantics, but also MALION. Its importance lies in its ability to allow a pro-
visual semantics. Thus, every operation affects the grammer to visualize algorithms that will be used in
display. the production version. PYGMALION allows the pro-

Programming in PYGMALION consists of creating a grammer to gain confidence in an algorithm by watch-
sequence of display frames, the last of which contains ing it in all stages of execution and under diverse cir-
the desired result. While the sequence is being cumstances.
created or replayed, the user may see the effect of
each operation on the data and program state. Smith
very emphatically states the distinction between PYG- 8. The Mini-LOGO Animation System
MALION and graphical programming languages: The mini-LOGO animation system produces a

dynamic display of flow of control In the context of a
I want to emphasize that PYGMALION is not a graphical display of program text. The mini-LOGO animating
programming language in the traditional sense. interpreter accepts a LOGO command, a set of LOGO
Graphical programming languages have all attempted procedures, and a set of illustration specifications. It
to find two-dimensional ways to tell programs what to produces an animation sequence that depicts he exe-
do. This inherently involves the manipulation of formal cution of the command and the called procedures. It
representation of data. PYGMALION has no representa- shows the execution of the initial command. followed
tion for telling a program anything; PYGMALION is an by the execution of every statement In every called

* environment for doing computations. If the system procedure in the order In which each is encountered.

Desia n For a Program Visualization System B-9

All procedure statements are displayed surrounded by paragraphed program text interspersed with pictorial
the code of that procedure. representations, or snapshots, of the program's data.

The user specifies the subject by designating a The system consists of a preprocessor that reads an
LOGO command to be illustrated. The system gives SP/k program and an "illustration specification." It
the user no control over the composition, the events to expands the program with statements and new vari-
be visualized, or the context, for they are "hard-wired." ables to keep track of the program's execution and to
The user can exercise minimal control over the sym- produce graphic output. Execution of the expanded

• bolism by specifying the visual transformations used program then produces the text and the interspersed
to map one program "state" into another program snapshots. Each snapshot reflects the state of the
state. The user has much control over the data during a particular execution of the immediately
dynamics-the speed with which these transforma- preceding program code.
tions take place. The user specifies the subject of the illustration by

The mini-LOGO system is highly specialized towards naming a flowgroup-execution, which is one iteration
the pedagogical display of small, recursive LOGO pro- of a particular loop or one execution of a procedure.
cedures. It is of little long-term use. It does suggest He also names the variables that he wants to appear
how hard it may be to develop cognitively meaningful in the snapshot. Symbolism is primarily determined by
displays that are effective for a wide variety of pro- the system, although the user can request particular
gramming concepts. labeling of arrays and subsets of arrays. The system

determines the composition, selects the events
8.7 The Micro-PL/1 Animation System automatically, and controls the juxtaposition of

displayed text to displayed data. Because the imple-
The micro-PL/1 animation system produces a mentation was done in a batch processing environ-

dynamic display of program data. The micro-PL/I ment, there are no dynamics to control and no contex-
animating compiler-interpreter accepts a program in a tual possibilities other than those already described.
subset of PL/1, augmented with a set of pseudo- Yarwood's thesis, within which this system was
comments that appear at the beginning of the program developed, represents one of the most thoughtful
text and at key locations within it. The pseudo- investigations in the area of program visualization car-
comments control the production of an animation tied out to date. However, the concepts need to be
sequence that shows how s;e;cted variables evolve extended to an interactive environment. Also, the
over time. approach must be applied to a far greater subset of

The user specifies the subject by des..nating the modern language features then the fixed scalars and
variables that are to appear in the illustrations. Sym- single-dimensional vectors of the original implementa-
bolism is specified by selecting parameterized izons tion.
from an image library. Composition is specified by the
user in great detail through the use of the expression B.9 The Sorting Animation System
writing tools of the host language. Events are dep-
icted whenever a selected variable changes value or The sorting animation system produces a dynamic
whenever a pseudo-comment embedded in the code display of data being generated by a fixed set of sort-
is "executed." The user has adequate control over ing algorithms. The system consists of a set of pro-
dynamics. All illustrations are independent; no context grams that accepts a file of unsorted data and certain
is provided, run-time parameters. It then produces an animation

The micro-PL/1 system is useful pedagogically in sequence that shows the data being sorted.
dealing with small micro-PL/I programs. It has three The user specifies the subject of the illustration by

* major conceptual weaknesses: providing the file of input data. The symbolism, the
composition, and the events are "hard-wired," with the

S1. It produces illustrations of data only. exception of a few minor details such as the choice of
*color. The user has a great deal of flexibility in the

2. It forces the user to modify extensively the specification of dynamics. The system provides no
program that is to be illustrated, capabilities for context.

3. It forces him to work with great precision and This system consists of a small set of highly spe-
a in great detail to produce even simple visuali- cialized programs written to make a 30 minute teach-r zations. Ing film on a set of Sorting algorithms. It has taught us

a number of lessons about program visualization:

, 8 The SPAk Visualization System 1. How effective symbolism depends upon the
The SP/k visualization system produces illustrations ithin the luc tion, ane o text

within the total composition, and the contextthat consist of neatly formatted, automatically within which the image is displayed.

i~
pin , , . .

B-10 PROGRAM DESCRIPTION TECHNIQUES

2. How powerful and flexible the control over C program. It remains for us to turn the output of
dynamics needs to be to produce meaningful these probes into meaningful visualizations.
animation sequences.

3. How much insight can be gained from simply
viewing the data if the illustrations are
designed carefully. 8. 1 Summary

The program description techniques surveyed in this

B.10 CDEBUG document can be divided into two categories: those
that describe programs by flow of control, and those

The CDEBUG system produces a sequence of that describe programs by flow of data. HIPO charts
snapshots of program data and a tiny amount of flow fall into the latter category, while conventional
of control in the context of a display of program text. flowcharts, NSD, and GREENPRINTS fall into the former
The system consists of a run-time debugging environ- category. PYGMALION fits neatly in neither category,
ment that accepts a C program in source language, and cannot be considered a program description tech-
the object module produced by a suitably modified C nique; it is a programming technique itself.
compiler, and a debugging script. Execution of the Of those techniques which describe the flow of con-
program then produces a display of program text and trol in programs, only NSD and GREENPRINTS present
a set of snapshots. Each snapshot reflects the state of an accurate view of the structure of the program.
the data during a particular execution of the immedi- Flowcharts do not reflect the structure of the program
ately preceding program code. they are intended to model; they lack the appropriate

The user specifies the subject of the illustration by constructs to do so.
naming the variables he wants to appear in the The power of NSD and GREENPRINTS lie in their abil-
snapshot. Symbolism is determined by the system. It ity to graphically represent the structure of programs
consists of a linear display of the contents of relevant in a compact and obvious manner. A person examin-
machine locations expressed in a source language ing one of these diagrams can easily discern the
notation. Composition is also determined by the sys- structure of the source code and quickly map the
tem. The user controls the events at which snapshots graphical constructs back into the source code. This
are produced by setting breakpoints. There is no is a crucial factor in the effectiveness of a program
capability for animation, so there are no dynamics. description technique.
The user has some control over context. He can Both NSD and GREENPRINTS are easy to learn. In
decide how much of the screen is to be allocated to fact, little effort is required once the basic repertoire of
program text and how much is to be used for program symbols is mastered. Also, they can be generated
data, and he can review previous snapshots that have automatically from existing program text. This is
been saved on a stack. important in the program visualization context; these

Crossey's debugging system provides a foundation techniques are adaptable to existing software. Furth-
upon which one could base future experiments in pro- ermore, design systems can be built which use these
gram visualization. Her system provides a rich set of techniques to create new software that satisfies high
source language probes for interrogating the state of a standards of program structure and documentation.

i

,,°

Design for a Program Visualization System C-i

C. REFERENCES [KERNIGHAN and MCILROYI
Kernighan, BW. and MD. Mcllroy, Unix Prograner's

[ADA] Manual. Bell Laboratories. Murray Hill, New Jersey.
SIGPLAN NOTICES: Preliminary ADA Reference Manual, [KNOWLTON]
14. 6, Part A. Association for Computing Machinery, Knowlton, KC., L6: Bell Telephone Laboratories Low-
Inc., New York, June 1979. Level Linked List Language, two black and white films.

IBAECKERJ sound, Bell Telephone Laboratories. Murray Hill, New
Baecker. R, "Sorting Out Sorting," 16mm color video- Jersey, 1966.
tape, sound, 25 minutes, Dynamic Graphics Project, [LIONS]
Computer Systems Research Group, University of Lions, J., A Commentary on the Unix Operating System,
Toronto, Toronto, Ontario, 1981. Department of Computer Science, University of New

[BELADY, CAVANAGH and EVANGELISTI South Wales, 1977.
Belady. LA., JA. Cavanagh, and cJ. Evangelisti, INASSI and SHNEIDERMAN]
"GREENPRINT: A Graphical Representation for Struc- Nassi, I. and B. Shneiderman, "Flowchart Techniques
tured Programs," IBM Research Report RC 7763, July for Structured Programming," SIGPLAN Notices of the
1979. ACM, 8, 8, 12-26, August 1973.

[BERNSTEIN, BLAUSTEIN and CLARKE] [ROSS]
Bernstein, PA., B.T. Blaustein, and E.M. Clark, "Fast Ross, D.T., "Structured Analysis (SA): A Language for
Maintenance of Semantic Integrity Assertions Using Communicating Ideas," Software Engineering (SE-3, 1)
Redundant Aggregate Data," Proceedings of the 1980 IEEE Computer Society, Silver Spring, Maryland, 34,
Conference on Very Large Data Bases. Also available January 1977.
as Technical Report TR 05-80, Aiken Computation
Laboratory, Harvard University, Cambridge, Mas- [ROTHNIE et a.]
sachusetts 02138. Rothnie, James B. Jr., Philip A. Bernstein, Steven Fox.

Nathan Goodman, Michael Hammer, Terry A.
(FREI, WELLER and WILLIAMS] Landers, Christopher Reeve, David Shipman, and

Frei, HP., D.C. Weller, and R. Williams, "A Graphics- Eugene Wong, "SDD-1: A System for Distributed
Based Programming-Support System," Computer Databases." Technical Report CCA-02-79 (revised).
Graphics, 12,3,43-49, August 1978. Computer Corporation of America, 575 Technology

[HAIBTI Square. Cambridge, Massachusetts 02139, 1 January

Haibt, Lois M, "A Program to Draw Multilever Flow 1979.
Charts," Proceedings of the Western Joint Computer [SMITH]
Conference, San Francisco, California, March 1959, Smith, D.C., "PYGMALION: A Creative Programming

[HAMMER and SARIN) Environment," Stanford Artificial Intelligence Memo AIM-

Hammer, Michael M. and S. Sarin, "Efficient Monitor- 260, June 1975.

ing of Database Assertions," Proceedings of the 1978 [STAY]
SIGMOO Conference on Management of Data. Stay. JF., "HIPO and Integrated Program Design," tBM

[HEROT et al.] Systems Journal, 15,2, 143-154,1978.

Herot, Christopher F., Richard T. Carling, Mark [STOCKHAM]
Friedell, David Kramlich, and J. Thompson, "Spatial Stockham, T.G., "Some Methods of Graphical Debug-
Data Management System: Semi-Annual Technical ging," Proceedings of the IBM Scientific Computing Sym-

k * Report," Technical Report CCA-79-25, Computer Cor- posium on Man-Machine Communication. Yorktown
*potation of America, 575 Technology Square, Cam- Heights, New York, 57-51, May 1965.

bridge, Massachusetts 02139. 30 June 1979. [TEITELBAUM]
[HIPO] Teitelbaum, R.T., "The Cornell Program Synthesizer: A

HIPO- A Design Aid and Documentation Technique, IBM Microcomputer Implementation of PLiCS," Depart-
Corporation. Data Processing Division, White Plains, ment of Computer Science, Cornell University,
New York 10504. Ithaca, New York.

(HOPGOO] (WONG and EDELBERGI
Hop0ood, FRA., "Computer Animation Used as a Wong, K.C. and M. Edelberg, 'Interval Hierarchies and
Tool in Teaching Computer Science," Proceedings of their Application to Predicate Files," ACM Tlamnsc-
the 1974 F/P Congress, Applications Volume, 889-892. tioes of Database Systems, 2. 3, 223-232. September

1977.

The Official Distribution List for the Technical, Annual, and

Final Reports for Contract N00014-80-C-0683

Defense Documentation Center 12 copies
Cameron Station
Alexandria, VA 22314

Office of Naval Research
Arlington, VA 22217

Information Systems Program (437) 2 copies
Code 200 1 copy
Code 455 1 copy
Code 458 1 copy

Office of Naval Research I copy
Eastern/Central Regional Office
Bldg. 114 Section D
666 Summer Street
Boston, MA 02210

Office of Naval Research 1 copy
Branch Office, Chicago
536 South Clark Street
Chicago, IL 60605

Office of Naval Research 1 copy
Western Regional Office
1030 East Green Street
Pasadena, CA 91106

Naval Research Laboratory 6 copies
Technical Information Division
Code 2627
Washington, DC 20375

Dr. A. L. Slafkosky 1 copy
Scientific Advisor
Commandant of the Marine Corps (RD-I)
Washington, DC 20380

Naval Ocean Systems Center 1 copy
Advanced Software Technology Division
Code 5200
San Diego, CA 02152

Mr. E. H. Gleissner 1 copy
Naval Ship Research & Development Center
Computation and Mathematics Department
Bethesda, MD 20084

_i l I _ i i i -
.... 4.

2.

Capt. Grace M. Hopper (008) 1 copy
Naval Data Automation Command
Washington Navy Yard
Bldg. 166
Washington, DC 20374

Defense Advanced Research Project Agency 3 copies
Attn: Program Management/MIS
1400 Wilson Boulevard
Arlington, VA 22209

* i
,I

* .

* :t..

DATE

ILMEml

